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Abstract
The purpose of this paper is to provide an elementary introduction to the
qualitative and quantitative results of velocity combination in special relativity,
including the Wigner rotation and Thomas precession. We utilize only the most
familiar tools of special relativity, in arguments presented at three differing
levels: (1) utterly elementary, which will suit a first course in relativity;
(2) intermediate, to suit a second course; and (3) advanced, to suit higher
level students. We then give a summary of useful results and suggest further
reading in this often obscure field.

1. Introduction

The problem of how to consider velocities in a special relativistic setting is fundamental
to many areas of both theoretical and applied physics [1–7]. However, students are rarely
introduced to anything beyond the most basic of results (such as the relativistic composition
of parallel velocities), on account of the perceived complexity and confusion surrounding the
combination of velocities in special relativity. The aim of this paper is to remove some of
this confusion and clarify the qualitative concepts associated with the relativistic combination
of velocities, which we do in section 2. This includes a description of what such velocities
actually ‘mean’, what the Wigner rotation represents, and how this leads to the Thomas
precession.

In section 3, we provide derivations of certain key quantitative results, using only
elementary concepts of special relativity. We begin with the simple cases of relativistically
combining parallel and perpendicular velocities in section 3.2. This section is particularly
1 Present address: Department of Physics and Astronomy, University of Canterbury, New Zealand.
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Figure 1. The common (and misleading) depiction of the combination of velocities. Mission
control sees Alice moving with velocity !v1, and Alice sees Bob moving with velocity !v2 (shown as
a double line to indicate this is in Alice’s frame). Mission control observes Bob as the spacecraft
labelled B21, and to be moving at velocity !v21, but pointing in a direction rotated by the Wigner
rotation angle !. From mission control’s perspective, Bob appears to be ‘sliding’ sideways in the
direction !v21.

relevant for those new to such concepts. The formulae are simple and elementary to derive,
yet still illustrate the fundamental issues of combining relativistic velocities, including the
Wigner rotation and Thomas precession. In section 3.3, we use the results already obtained
to consider the general combination of velocities—that is, where the velocities are neither
necessarily parallel nor perpendicular. We envisage this section to be suitable for students
undertaking a first course in relativity, though proving the results of parts of section 3.3 involves
extensive vector manipulation.

In section 4, we consider the relativistic combination of velocities using the boost matrix
formulation of special relativity. Whilst in principle this is no more complex than our
elementary derivations of section 3, a familiarity with the boost matrix representation is
assumed, and hence this section will likely be suitable for students undertaking a second
course in relativity.

In section 5, we briefly outline how the spinor formulation of special relativity can
reproduce the results we have already obtained. This section is only suitable for those already
familiar with the spinorial representation of Lorentz transformations, and hence is likely to be
accessible mainly for more advanced students.

Lastly, in section 6 we give a summary of important (and often equivalent) formulae in
this field, and in section 7 we provide references for further reading.

2. Qualitative introduction

2.1. Relativistic combination of velocities

To begin with, consider Alice and Bob, each travelling in a spaceship somewhere in the
vicinity of Earth, as illustrated in figure 1. Unfortunately, due to equipment malfunction,
mission control cannot directly observe the velocity of Bob. Nonetheless, Alice is able to
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Figure 2. A more correct interpretation of the relativistic combination of velocities. The solid lines
indicate the case when Alice has velocity !v1 as measured by mission control and Bob has velocity
!v2 as measured by Alice, resulting in mission control seeing Bob moving with velocity !v21 (that
is, in the spacecraft B21). The dashed lines indicate the naively ‘symmetrical’ case, where Alice
has velocity !v2 as measured by mission control and Bob has velocity !v1 as measured by Alice,
resulting in mission control seeing Bob moving with velocity !v12 (that is, in the spacecraft B12).
In addition, the Wigner rotation angle, ±! in each case, is also the angle between !v12 and !v21.
The angle θ is that between −!v1 and !v2, as measured by Alice.

measure the velocity of Bob to be !v2, and mission control can measure the velocity of Alice
to be !v1. The key question surrounding the relativistic combination of velocities is how we
deduce the velocity !v21 of Bob, as seen by mission control, using the velocities !v1 and !v2.
(Note that from the beginning, we must be clear that !v2 is measured in Alice’s rest frame,
whilst !v1 and !v21 are measured in mission control’s rest frame.) As shown in section 3.3, we
may indeed derive a simple formula for this velocity !v21, and it is this quantitative result that
embodies what we mean by the relativistic combination of velocities !v1 and !v2.

Note that figure 1 is somewhat misleading in that it treats the velocity vectors
like Euclidean displacement vectors—in reality, they need not be linked ‘head-to-tail’.
Nonetheless, this presentation makes it clear which velocities are being combined and hence
remains qualitatively useful.

2.1.1. Wigner rotation. The relativistically combined velocity !v21 cannot be interpreted as
directly as we are used to. Whilst mission control observes Bob to be travelling with velocity
!v21, they will observe him to be pointing at an angle ! to !v21, as illustrated in figure 1. That
is, Bob’s frame of reference appears to mission control to be rotated by an angle !, which is
known as the Wigner rotation angle.

One may also consider the apparently ‘symmetrical’ case of the combined velocity !v12,
where we imagine instead that Bob has a velocity !v1 as seen by Alice, and Alice has a velocity
!v2 as seen by mission control, as illustrated in figure 2. In standard Galilean relativity, we
would predict quite rightly that !v12 = !v21. However this is not the case when considering
the relativistic combination of velocities, as although ||!v12|| = ||!v21||, they do not point in
the same direction—there is some angle ! between them. As we will show, this is also the
aforementioned Wigner rotation angle. Indeed, the observation that the Wigner rotation angle
corresponds to the angle between !v12 and !v21 can be further extended: in the case of mission
control seeing Alice moving with velocity !v1, and Alice seeing Bob moving with velocity !v2,
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(a) (b)

Figure 3. (a) At time t, mission control sees both Alice and Bob travelling at velocity !v1. However
Bob’s boosters fail, and he falls into Earth’s orbit, so at a time dt later, Alice measures Bob to have
a velocity d!v2. (b) Mission control now sees Bob (labelled as spacecraft B21) to be moving with
velocity !v21 = d!v2 ⊕ !v1, and his direction rotated by the infinitesimal Wigner rotation angle d!.

then mission control will see Bob travelling at velocity !v21, but pointing in the direction of
!v12, as is illustrated in figure 2. A similar argument applies for !v12.

2.1.2. Thomas precession. The Thomas precession is a consequence of the Wigner rotation
and arises when one considers the case of Bob experiencing some form of centripetal
acceleration. To set up a suitable scenario, let us assume that Alice and Bob are travelling off
together to explore the moon, and hence, at some time t, both are travelling at velocity !v1 as
seen by mission control. Hence Alice observes Bob at rest in her frame. This is illustrated in
figure 3(a).

However Bob’s boosters suddenly fail, and hence he falls into a circular orbit around
Earth, while Alice continues to travel in a straight line towards the moon2. Hence Alice now
measures Bob to have some velocity d!v2 at a later time dt . This is analogous to the situation
depicted in figure 1, except now !v2 becomes the infinitesimal d!v2. At the time t + dt , we think
of Bob’s velocity relative to mission control as !v21 = d!v2 ⊕ !v1, and his frame to be rotated by
the infinitesimal Wigner rotation angle d!, as illustrated in figure 3(b). The associated rate of
change of the Wigner rotation angle d!/dt (that is, how fast Bob’s frame is rotating relative
to mission control’s) is called the Thomas precession rate. The actual Thomas precession !T

is the total Wigner rotation turned through if Bob carries out a complete orbit. That is,

!T =
∮

C

d!
dt

dt (1)

for any closed curve C in velocity-space.

2 Alice is using her boosters so as not to fall into an orbit and hence is not accelerating with respect to mission
control. We should also be clear that we are considering the case of Newtonian gravity and only for the pedagogical
purpose of providing a centripetal acceleration in this example. In fact, any force applied through the centre of mass
would do the job, such as (for example) a string attached to a gimbal at the centre of mass. For an electron one might
like to consider an electromagnetic force.
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(a)

(b)

Figure 4. (a) Parallel and (b) perpendicular relativistic combination of velocities.

3. Elementary-level discussion

3.1. Parallel velocities

To begin the discussion, we consider the relativistic combination of velocities for the special
cases of parallel and perpendicular velocities !v1 and !v2, as illustrated in figures 4(a) and (b)
respectively. However, as the formula for the relativistic combination of parallel velocities is
usually given in textbooks (see for example [1] or [2]), we merely state the well-known result

!v21 = !v12 = !v1 + !v2

1 + !v1 · !v2
, (2)

where we have set c = 1. It is important to note that in this case the direction and magnitude
of the two combined velocities !v21 and !v12 are the same, and hence there will be no resulting
Wigner rotation or Thomas precession. It also illustrates that Thomas precession can indeed
only occur for centripetal motion, where !v1 and d!v2 are not collinear.

3.2. Perpendicular velocities

The formula for the relativistic combination of perpendicular velocities can be derived in a
similar manner as for the parallel case. Here we will use the elementary concepts of time
dilation and length contraction. A more explicit Lorentz transformation calculation can easily
verify the following results.

Consider the case illustrated in figure 4(b), where !v1 and !v2 are perpendicular3. As there
is no length contraction for perpendicular distances, but time dilation still occurs in moving

3 Note that we must be clear what we mean by ‘perpendicular’, as recall that !v1 is measured in mission control’s rest
frame, whilst !v2 is measured in Alice’s rest frame. It only makes sense to say two velocities are perpendicular if they
are measured in the same reference frame. Hence when we say that !v1 and !v2 are perpendicular, we actually mean
that in Alice’s frame of reference, the velocity of mission control is −!v1 and the velocity of Bob is !v2 and these two
velocities are perpendicular.
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from Alice’s frame to mission control’s, the velocity !v2 in mission control’s reference frame
is just !v2/γ1. Therefore the velocity !v21 of Bob as seen by mission control is just

!v21 = !v1 +
!v2

γ1
= !v1 + !v2

√
1 − v2

1 . (3)

Similarly we find that

!v12 = !v2 +
!v1

γ2
= !v2 + !v1

√
1 − v2

2 . (4)

These formulae are extremely useful to introduce the concept of relativistically combining
velocities. They are simple and almost trivial to derive, while still illustrating the fundamental
concepts of relativistic velocity combination—the non-intuitive addition laws, the Wigner
rotation, and the Thomas precession—as we shall now see.

3.2.1. Wigner rotation. Let us continue with the case of !v1 and !v2 being perpendicular,
and hence with the relativistic combined velocities !v21 and !v12 as defined by (3) and (4)
respectively. We note that

!v21 $= !v12, but ||!v12|| = ||!v21|| =
√

v2
1 + v2

2 − v2
1v

2
2 . (5)

As !v12 and !v21 have the same magnitude, but a different direction, we expect some form of
Wigner rotation, as previously discussed. One may naively guess that the Wigner rotation
angle ! may have something to do with the angle between !v21 and !v12, and in fact, as we
will show in section 4.2, it turns out that the angle between !v21 and !v12 is exactly the Wigner
rotation angle. We can easily calculate this angle by using the definition of the cross product
and equations (3), (4) and (5):

sin! = ||!v12 × !v21||
||!v12|| ||!v21||

=
v1v2

(
1 − 1

γ1γ2

)

v2
1 + v2

2 − v2
1v

2
2

= v1v2γ1γ2

1 + γ1γ2
. (6)

Again, this is an extremely simple formula for the Wigner rotation angle !, which is easily
verifiable, using only the fundamental concepts of relativity. While (6) only applies in the
case of perpendicular velocities, it nonetheless introduces Wigner rotation, and is sufficient
for considering the Thomas precession.

3.2.2. Thomas precession. Recall that the Thomas precession rate gives how fast Bob’s
frame is rotating with respect to mission control’s. In our case, Alice sees mission control
travelling at −!v1 and Bob travelling at some infinitesimal velocity d!v2, as shown in figure 3(b).
If we assume that Bob is travelling in a circular orbit around Earth, then d!v2 is perpendicular
to !v1, and hence our formula for the Wigner rotation angle (6) applies. As we let d!v2 → 0,
then γ2 → 1 and we find that the infinitesimal Wigner rotation angle to first order in dv2 is
(using the small angle approximation)

d! = v1

(
γ1

1 + γ1

)
dv2. (7)

Hence the Thomas precession rate of Bob’s frame as measured by mission control is

d!
dt

= av1

(
γ1

1 + γ1

)
, (8)

where a = dv2/dt is the centripetal acceleration experienced by Bob. Hence we see that, at
least for the specific case of circular motion, the formula describing the Thomas precession is
simple, with a physically intuitive and elementary derivation.
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(a)

(b)

Figure 5. (a) The velocity !v2 of Bob as measured by Alice decomposed into the components !v2‖1
and !v2⊥1, parallel and perpendicular to !v1 respectively. The relativistically combined velocity !v21
is the velocity of Bob as seen by mission control. (b) The S o frame, which is observed to have
velocity !v o

1 by mission control, which represents the relativistic combination of velocities !v2‖1 and
!v1. In the S o frame, Bob is measured to have velocity !v o

2 , perpendicular to !v o
1 .

3.3. General velocities

In general, the relativistic combination of velocities in arbitrary directions is nowhere near as
simple as in the parallel and perpendicular cases previously discussed. However, we shall now
present a derivation of a general formula for !v21 which relies only on the elementary results
of (2) and (3), and a simple time dilation argument. Let us consider the general situation of
figure 1; however, we now decompose Bob’s velocity as seen by Alice into its component !v2‖1

parallel to !v1 and its component !v2⊥1 perpendicular to !v1, as illustrated in figure 5(a). Let S o

denote the rest frame of some contrived intermediate observer, whom Alice measures to have
velocity !v2‖1, as in figure 5(a).

As !v2‖1 and !v1 are collinear, by (2), the velocity of S o as measured by mission control is

!v o
1 = !v2‖1 + !v1

1 + !v2‖1 · !v1
= !v2‖1 + !v1

1 + !v1 · !v2
, (9)

and there is no Wigner rotation of the S o frame relative to mission control. Therefore, we can
think of a new situation, as illustrated in figure 5(b), where we have S o moving at velocity !v o

1
relative to mission control, and Bob moving at some velocity !v o

2 as measured in the S o frame.
Using arguments similar to those in section 3, since !v o

1 and !v o
2 are perpendicular, then, due to

time dilation,

!v o
2 = γ2‖1 !v2⊥1, where γ2‖1 = 1

√
1 − v2

2‖1

. (10)

Thus, as mission control sees S o moving at velocity !v o
1 , and the observer S o sees Bob to

be moving at the perpendicular velocity !v o
2 = γ2‖1 !v2⊥1, we may apply formula (3) for
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the relativistic combination of perpendicular velocities. Replacing !v1 with !v o
1 and !v2 with

!v o
2 = γ2‖1 !v2⊥1, we see that the velocity of Bob with respect to mission control is given by

!v21 = !v o
1 +

γ2‖1

γ o
1

!v2⊥1. (11)

Furthermore, from (9) we see that

γ o
1 ≡ 1

√
1 − (v o

1 )2
= γ2‖1γ1(1 + !v1 · !v2), (12)

and hence (11) becomes

!v21 =
!v1 + !v2‖1 +

√
1 − v2

1 !v2⊥1

1 + !v1 · !v2
= !v2 + γ1!v1 + (γ1 − 1)(!v1 · !v2)!v1/v

2
1

γ1(1 + !v1 · !v2)
. (13)

Similarly, we find

!v12 =
!v2 + !v1‖2 +

√
1 − v2

2 !v1⊥2

1 + !v1 · !v2
= !v1 + γ2!v2 + (γ2 − 1)(!v1 · !v2)!v2/v

2
2

γ2(1 + !v1 · !v2)
. (14)

These are the most elementary formulae for the composition of general velocities that we have
been able to uncover. Their derivation is simple and fundamental, with an easily attributable
physical motivation.

3.3.1. Wigner rotation. Whilst this subsection introduces no new concepts, the vector algebra
becomes more tedious and may somewhat confuse the issue, so we consider this subsection to
be more suitable for advanced students in a first course on relativity. We use a similar procedure
as in section 3.2.1 to consider the Wigner rotation; to do so, we must have ||!v21|| = ||!v12||.
We leave it to the reader to verify that indeed

||!v21|| = ||!v12|| =
√

||!v1 + !v2||2 − ||!v1 × !v2||2
1 + !v1 · !v2

, (15)

and that this agrees with the parallel and perpendicular cases already discussed. Thus !v21 and
!v12 have the same magnitude—but by (13) and (14), they are not equal, and hence must point
in different directions. As previously described for the perpendicular case in section 3.2.1,
the Wigner rotation angle ! is exactly the angle between !v21 and !v12 as measured by mission
control. (We shall explicitly prove this in section 4.2). To calculate !, firstly rewrite (13) and
(14) as

!v21 =
!v1 +

(
1 − γ−1

1

)
!v2‖1 + γ−1

1 !v2

1 + !v1 · !v2
and !v12 =

!v2 +
(
1 − γ−1

2

)
!v1‖2 + γ−1

2 !v1

1 + !v1 · !v2
. (16)

The Wigner rotation angle ! then follows from the cross-product of the vectors !v21 and !v12.
Using (15) and (16), this results in

sin(!) =
||
(
!v2 +

(
1 − γ−1

2

)
!v1‖2 + γ−1

2 !v1
)
×

(
!v1 +

(
1 − γ−1

1

)
!v2‖1 + γ−1

1 !v2
)
||

||!v1 + !v2||2 − ||!v1 × !v2||2
, (17)

which can be simplified to

sin(!) = v1v2 sin θ

[
1 − γ−1

1 γ−1
2 + (!v1 · !v2)

( 1
1+γ−1

1
+ 1

1+γ−1
2

)
+ (!v1·!v2)

2(
1+γ−1

1

)(
1+γ−1

2

) ]

||!v1 + !v2||2 − ||!v1 × !v2||2
, (18)
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where θ is the angle between !v1 and !v2 as measured by Alice4. However

γ12 ≡ 1
√

1 − v2
12

= γ1γ2(1 + !v1 · !v2) (19)

may be rearranged to give

cos θ = γ12 − γ1γ2

v1v2γ1γ2
. (20)

Hence, after a little massaging, (18) may then be simplified to

sin! = v1v2γ1γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ, (21)

which some may recognize as Stapp’s elegant formula [3]. Similarly, using the definition of
the dot-product to find the Wigner rotation angle !, one finds

cos! =
||!v1 + !v2||2 − ||!v1 × !v2||2

[ 1
1+γ−1

1
+ 1

1+γ−1
2

− !v1·!v2(
1+γ−1

1

)(
1+γ−1

2

) ]

||!v1 + !v2||2 − ||!v1 × !v2||2
, (22)

and eventually

cos! + 1 = (γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
. (23)

Indeed there are many explicit formulae for the Wigner rotation angle !, a few of which are
given in section 6. Stapp’s formula arguably remains the simplest and most useful. Note that
while the derivation has been somewhat tedious in terms of algebra, the underlying physics
is utterly elementary—boiling down to the use of time dilation arguments combined with the
usual composition of parallel velocities.

3.3.2. Thomas precession. We consider the same argument as given in section 3.2.2;
however, we now do not make the simplifying assumption that !v1 is perpendicular to d!v2—that
is, Bob need not be in a circular orbit. It still remains true that the infinitesimal Wigner rotation
in mission control’s frame of reference is given by letting d!v2 → 0; however, we now use our
general formula (21). Doing so, then γ2 → 1, and from (19), we see that γ12 → γ1. Hence
the infinitesimal Wigner rotation angle d! is, to first degree in d!v2,

d! ≈ sin(d!) = v1 dv2 sin θ
γ1

1 + γ1
= ||!v1 × d!v2||

γ1

1 + γ1
. (24)

Therefore the Thomas precession rate in mission control’s frame of reference is5

d !!
dt

= !v1 × !a
(

γ1

1 + γ1

)
, (26)

where !a = d!v2/dt is the centripetal acceleration experienced by Bob. At this stage, it is clear
that (26) simplifies to formula (8) we obtained in the perpendicular case.
4 Note that !v1 and !v2 are in different frames, so it makes no sense to compare the angle between these velocities.
What we really mean is that θ is the angle between !v2 and the velocity, −!v1, of mission control, as seen by Alice.
5 There is a degree of confusion surrounding the precise definition of the Thomas precession. Our result agrees with
that of [6] and [7], and not with the more well known one of [1], which gives the Thomas precession in mission
control’s frame as

d !!
dt

= !v1 × !a
(

γ 2
1

1 + γ1

)

= !v1 × !a
(
γ1 − 1

v2
1

)

. (25)

This however, as explained in [6] and [7], is actually the Thomas precession rate as viewed from Alice’s reference
frame. The additional γ1 factor is due to the time dilation between frames.



1042 K O’Donnell and M Visser

4. Intermediate level—boost matrix formulation

We now consider the relativistic combination of velocities using the boost matrix formulation
of special relativity. The results derived confirm those already found in section 3; however,
the use of boost matrices gives further conceptual insight—notably that the Wigner rotation
angle is the angle between !v21 and !v12.

4.1. Composition of boosts

Firstly, consider an arbitrary boost from a frame S to another frame S o that is moving at a
velocity !v relative to S. Setting c = 1, the boost matrix B representing the transformation from
the S frame to the S o frame, such that !x o = B!x, is

B =




γ −γ !vT

− γ !v I + (γ − 1)
vivj

v2



 =




γ −γ !vT

− γ !v Pv + γQv



 , (27)

where we have used the notation Pv to represent the projection onto the plane perpendicular
to !v (explicitly, [Pv]ij = δij − vivj /v

2). Similarly Qv = I − Pv gives the part parallel to !v.
Now, any Lorentz transformation L may be decomposed into a boost followed by a rotation6

L = RB (28)

for some rotation R and some boost B. Furthermore, rotations take the form

R =
[

1 0
0 R3

]
, (29)

where R3 is some three-dimensional rotation matrix. Hence by (27), (28) and (29), any Lorentz
transformation can be written in the form

L =




γ −γ !vT

− γR3!v R3{Pv + γ Qv}



 . (30)

Thus we can calculate what the net Lorentz transformation L21 is for the situation depicted in
figure 1 by simply composing the two associated boosts—that is, boosting first by B1 and then
B2—so as to move from the S frame to the S o frame. Hence

L21 = B2B1. (31)

Writing this out explicitly using (27), we see that

L21 =




γ2 −γ2!vT

2

− γ2!v2 P2 + γ2Q2








γ1 −γ1!vT

1

− γ1!v1 P1 + γ1Q1



 (32)

=




γ2γ1(1 + !v2 · !v1) −γ2γ1!vT

1 − γ2!vT
2 [P1 + γ1Q1]

− γ2γ1!v2 − γ1[P2 + γ2Q2]!v1 [P2 + γ2Q2][P1 + γ1Q1] + γ1γ2!v2!vT
1



 . (33)

Thus if we wish to decompose this Lorentz transformation into the form L21 = RB21, and we
let !v21 denote the velocity corresponding to the boost B21, we can equate (30) and (33), which

6 Or a rotation followed by a boost—we will use the form of (28) consistently throughout the paper.
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gives



γ21 −γ21!vT

21

− γ21R3!v21 R3[P21 + γ Q21]





=




γ2γ1(1 + !v2 · !v1) −γ2γ1!vT

1 − γ2!vT
2 [P1 + γ1Q1]

− γ2γ1!v2 − γ1[P2 + γ2Q2]!v1 [P2 + γ2Q2][P1 + γ1Q1] + γ1γ2!v2!vT
1



 . (34)

Comparing the 00 terms, we see that

γ21 = γ2γ1(1 + !v2 · !v1), (35)

as we found previously in (19) (note that γ21 = γ12). Using this result in comparing the 0j

terms of (34), we see that

!v21 = !v1 + γ−1
1 P1!v2 + Q1!v2

1 + !v2 · !v1
. (36)

This can be written alternatively as

!v21 =
!v1 + !v2‖1 +

√
1 − v2

1 !v2⊥1

1 + !v2 · !v1
, (37)

which is what was derived in section 3.3. Furthermore, as follows from (28) and (31), we can
define a pure rotation matrix R and a pure boost matrix B21 such that

B2B1 = RB21. (38)

However, for the same rotation matrix R, we have

B1B2 = (B2B1)
T = (RB21)

T = BT
21R

T = B21R
−1 = R−1(RB21R

−1). (39)

Since (RB21R
−1)T = RB21R

−1, we see that RB21R
−1 is a pure boost—so we define

B12 ≡ RB21R
−1, such that

B1B2 = R−1B12. (40)

The results (38) and (40) verify the interpretation given in figure 2 that whilst mission control
may measure Bob to be moving with velocity !v21, his frame of reference will be rotated by !,
and similarly for !v12 (except the rotation will be by −!). Furthermore, from (40) it follows
that

R = B12B
−1
2 B−1

1 , (41)

and hence we have explicitly calculated the rotation matrix R. We can ‘simplify’ this further,
however, by using (40) and noting that

B2B1B1B2 = B2
12 . (42)

Thus by (41)

R =
√

B2B1B1B2B
−1
2 B−1

1 . (43)

We can now use the property that the angle ! rotated by in the rotation R is related to the trace
of the rotation matrix via tr(R) = 2(1 + cos(!)), and hence the Wigner rotation angle ! is

cos! + 1 = 1
2 tr

(√
B2B1B1B2B

−1
2 B−1

1

)
. (44)
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4.2. Connecting the angles

In deriving the formulae in sections 3.2.1 and 3.3.1 for the Wigner rotation angle, we assumed
that it was the angle between !v21 and !v12. We can now prove this using our boost matrix
formulation.

By (28) and (29), the Wigner rotation angle ! is just the angle involved in the rotation
R, or equivalently, the three-dimensional rotation R3. However, consider again (14) and (35),
which show that

γ21!v12 = γ2γ1!v2 + γ1[P2 + γ2Q2]!v1. (45)
By equating the i0 entries of (34), we see that γ21R3!v21 is also equal to the right-hand side of
(45), and hence

R3!v21 = !v12. (46)
Therefore, as previously claimed and now proved, we can find the Wigner rotation angle ! by
simply calculating the angle between !v12 and !v21.

4.3. Inverting the transformations

As a final consideration, what is the velocity of mission control as seen by Bob? If mission
control sees Bob moving with velocity !v21, does Bob see mission control moving with velocity
−!v21 as would be expected in Galilean relativity? If Bob’s frame is considered as the observer
frame, then he will see Alice moving with velocity −!v2 and Alice will see mission control
moving with velocity −!v1. Hence the velocity of mission control as observed by Bob is given
by the composition of the two velocities −!v2 and then −!v1, or in boost matrix form

B−1B−2 = B−1
1 B−1

2 = (B2B1)
−1 = (RB21)

−1 = B−1
21 R−1, (47)

where we have used that B−v = B−1
v , i.e. the inverse of a boost in a direction !v is just a

boost in the direction −!v. However from our definition of B12 ≡ RB21R
−1, we see that

B21 = R−1B12R and hence B−1
21 = R−1B−1

12 R, so (47) implies that
B−1B−2 = R−1B−1

12 . (48)
Thus the transformation from Bob’s frame to mission control’s frame is given by

B−1B−2 = B−21R
−1 = R−1B−12, (49)

where B−12 and B−21 correspond to boosts in the −!v12 and −!v21 directions respectively.
However, which one, B−21R

−1 or R−1B−12, should we consider to determine the velocity
of mission control as observed by Bob? The transformation B−21R

−1 implies first rotating
Bob’s frame, and then boosting along −!v21 to end up in mission control’s frame. Hence in
Bob’s rotated frame he will see mission control travelling at velocity −!v21. However, the
transformation R−1B−12 implies first boosting from Bob’s frame by −!v12, and then rotating.
Therefore in Bob’s original frame, he will see mission control travelling with velocity −!v12

(but pointing in a direction rotated by −!, due to Wigner rotation). Thus while mission
control sees Bob moving with velocity !v21 in their frame of reference, Bob sees mission
control moving with velocity −!v12 in his.

5. Advanced level—spinor formulation

In this section, we use the spinor formulation of special relativity to consider the relativistic
combination of velocities and the Wigner rotation angle. There are in fact two methods of
finding the results we require. The first is straightforward but tedious, so we only present the
initial formulation and the final results. The second version is less apparent, but much quicker,
and we give the full derivation.
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5.1. Explicit approach

Let σ = (σx, σy, σz) be a 3-vector of Pauli sigma matrices, and let

X = ctI + x · σ (50)

be a representation of a 4-vector X = (ct, x) in terms of a Hermitian 2 × 2 matrix. Then
boosts are represented by

X → BXB; B = cosh(ξ/2) + sinh(ξ/2) n · σ, (51)

and rotations by

X → RXR−1; R = cos(θ/2) + i sinh(θ/2) n · σ, (52)

where ξ is the rapidity parameter defined by v = tanh ξ . The Wigner rotation is now encoded
in the fact that

B2B1 = R21B21. (53)

One can write this out explicitly. Defining !! = ! !n!, upon equating coefficients, we find the
following four simultaneous, independent equations:

n! · n12 = 0, (54)

cos
!

2
cosh

ξ12

2
= cosh

ξ2

2
cosh

ξ1

2
+ sinh

ξ2

2
sinh

ξ1

2
n2 · n1, (55)

cos
!

2
sinh

ξ12

2
n12 − sin

'

2
sinh

ξ12

2
n! × n12 = cosh

ξ2

2
sinh

ξ1

2
n1 + cosh

ξ1

2
sinh

ξ2

2
n2,

(56)

cosh
ξ12

2
sin

!

2
n! = sinh

ξ1

2
sinh

ξ2

2
n1 × n2. (57)

One can then test one’s algebraic skill and fortitude, to eventually arrive at the already proven
results for the Wigner rotation

cos! + 1 = (γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
, (58)

and the familiar formula of Stapp [3]

sin! = v1γ1v2γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ. (59)

We congratulate those who verify this procedure. All the physics is already encoded in the
equations above—the only difficulty lies in the tedious nature of the algebra.

5.2. A more efficient approach

Whilst this derivation is significantly shorter step-wise, it involves some not entirely obvious
leaps of understanding that we leave for the reader to verify. To begin with

B2
12 = B1B2B2B1, (60)

and hence

γ12 = 1
2 tr

(
B2

12

)
= 1

2 tr(B1B2B2B1) = 1
2 tr

(
B2

1B2
2

)
= γ1γ2(1 + v1 · v2). (61)

This then leads to

cos θ = γ12 − γ1γ2√(
γ 2

1 − 1
)(
γ 2

2 − 1
) . (62)
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Using these results, and the fact that tr(R12B12) = tr(B1B2), we find√
1 + cos!

√
γ12 + 1 =

√
(γ1 + 1)(γ2 + 1) +

√
(γ1 − 1)(γ2 − 1) cos θ. (63)

Thus

cos! + 1 = (1 + γ1 + γ2 + γ12)
2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
(64)

as required.

6. Summary of useful formulae

General. The relativistic combination of general velocities !v1 and !v2:

!v21 =
!v1 + !v2‖1 +

√
1 − v2

1 !v2⊥1

1 + !v1 · !v2
= !v2 + γ1!v1 + (γ1 − 1)(!v1 · !v2)!v1/v

2
1

γ1(1 + !v1 · !v2)
, (65)

!v12 =
!v2 + !v1‖2 +

√
1 − v2

2 !v1⊥2

1 + !v1 · !v2
= !v1 + γ2!v2 + (γ2 − 1)(!v1 · !v2)!v2/v

2
2

γ2(1 + !v1 · !v2)
, (66)

||!v21|| = ||!v12|| =
√

||!v1 + !v2||2 − ||!v1 × !v2||2
1 + !v1 · !v2

, (67)

γ12 = γ1γ2(1 + !v1 · !v2). (68)
The Wigner rotation angle !:

sin! = v1γ1v2γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ, (69)

cos! + 1 = (γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
. (70)

The Thomas precession as seen in mission control’s reference frame:
d !!
dt

= !v1 × !a
(

γ1

1 + γ1

)
. (71)

The Thomas precession as seen in Alice’s reference frame:
d !!
dt

= !v1 × !a
(

γ 2
1

1 + γ1

)
. (72)

Perpendicular. The relativistic combination of perpendicular velocities !v1 and !v2 is
particularly elegant:

!v21 = !v1 +
√

1 − v2
1 !v2, (73)

!v12 = !v2 +
√

1 − v2
2 !v1, (74)

||!v21|| = ||!v12|| =
√

v2
1 + v2

2 − v2
1v

2
2, (75)

γ12 = γ1γ2. (76)
The Wigner rotation angle !:

sin! = v1γ1v2γ2

γ1γ2 + 1
, (77)

cos! + 1 = (γ1 + 1)(γ2 + 1)

γ1γ2 + 1
. (78)
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7. Further reading

For those students interested in more details regarding the relativistic combination of velocities
from a reasonably elementary viewpoint, the explicit boost composition approach taken in [5]
may prove useful. There are then many other standard textbook approaches, such as can be
found in [1] or [2]. Some of the finer details about the relativistic combination of velocities,
especially the relationships between the different frames, can be found in [4] and [7].

However the issue that receives the most attention in the literature is the Thomas precession
(and to a lesser extent the associated Wigner rotation)—partly due to the confusion surrounding
it. We feel that readers further interested in the Thomas precession (and relativistic velocity
combination in general) will benefit greatly from [6], which gives a review of the literature
(where the reader can find many higher level approaches outlined), a select few of the possible
derivations of the Thomas precession formula and some physical interpretations, and it also
clarifies some of the misconceptions surrounding the Thomas precession. One such of these is
what actually is the correct formulation, as alluded to in section 3.3.2. Reference [7] provides
further discussion on this point.
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