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Abstract
On transformation to the Fourier space (k, ω), the partial differential Maxwell
equations simplify to algebraic equations, and the Helmholtz theorem of vector
calculus reduces to vector algebraic projections. Maxwell equations and
their solutions can then be separated readily into longitudinal and transverse
components relative to the direction of the wave vector k. The concepts of wave
motion, causality, scalar and vector potentials and their gauge transformations
in vacuum and in materials can also be discussed from an elementary
perspective. In particular, the excessive freedom of choice associated with the
gauge dependence of the scalar and the longitudinal vector potentials stands
out with clarity in Fourier spaces. Since these potentials are introduced to
represent the instantaneous longitudinal electric field, the actual cancellation
in the latter of causal contributions arising from these potentials separately
in most velocity gauges becomes an important issue. This cancellation is
explicitly demonstrated both in the Fourier space, and for pedagogical reasons
again in spacetime. The physical origin of the gauge degree of freedom in the
masslessness of the photon, the quantum of electromagnetic wave, is elucidated
with the help of special relativity and quantum mechanics.

1. Introduction

Most textbooks on electromagnetism discuss the basic properties of the Maxwell equations
and their solutions in ordinary spacetime (r, t) [1, 2]. Electromagnetic properties in vacuum
and in materials are often nonlocal in spacetime, and are therefore awkward to describe. It is
well known that many of these properties become more transparent in the Fourier space (k, ω)

reached by Fourier transforms. We present in this paper a pedagogical discussion of Maxwell
equations in this Fourier space where their relative simplicity makes them more understandable
at an introductory level. Electromagnetism is a vast subject. The main objective of this paper is
to elucidate the mathematical and physical origins of the mysterious gauge degree of freedom
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in the choice of the electromagnetic scalar potential � and the longitudinal component A‖ of
the vector potential.

It had taken a century of research, from the Coulomb force law of 1785 through the 1835
vector potential of Gauss to the Lorenz gauge of 1867, to establish the nonuniqueness of � and
A‖ [1, 3]. Gauge transformations are discussed in almost all textbooks on electromagnetism,
but the subject still appears mysterious to many students. In this paper, three issues are
addressed to make gauge freedom more understandable. First, the longitudinal electric field
E‖, known to be gauge independent, is shown to have fractional contributions from � and
A‖ that differ in different gauges. Second, these two contributions to E‖ are found to be
individually retarded in general, involving signals propagated at an unphysical gauge velocity
that varies from 0 to ∞ depending on the gauge choice. However, these two retarded partial
contributions are found to add to a total E‖ that is instantaneous, acting at a distance. Our
conclusion thus differs from the conclusion presented or implied in many textbooks (e.g.,
p 242 of [1] and p 421 of [2]) and papers [4, 5] that E‖ propagates with the speed of light.
Third, the physical origin of gauge freedom is traced to the masslessness of the photon, the
quantum of electromagnetic waves, with the help of special relativity and quantum mechanics.

The paper is organized as follows. We begin, in section 2, with the spacetime Maxwell
equations in materials in SI units. The Fourier electromagnetic fields are then introduced, and
separated into longitudinal/transverse (L/T) components relative to the wave vector k. The two
Maxwell equations involving divergences are found to define longitudinal field components
that are instantaneous in vacuum, acting at a distance. The two curl equations also involve the
transverse fields.

Section 3 describes electromagnetic wave motion in linear isotropic materials.
Electromagnetic waves involve transverse fields only. The electromagnetic wave equation
contains a term dependent on both the time differential operator and a light speed v � c in
the material (c being the light speed in vacuum). Both features are needed for the transverse
fields to describe events happening causally at the light speed of the material.

In section 4, the transverse part of a vector potential is used to describe the magnetic
induction field. The longitudinal part of the vector potential is used together with a scalar
potential to describe the instantaneous longitudinal electric field when either one of them alone
can do the job. It is traditional to use a combination of both potentials. The permissible use of
different combinations gives rise to an extra ‘gauge’ degree of freedom. Most of these gauge
choices lead to potentials that are causal because they satisfy wave equations where signals
are propagated with an arbitrary gauge velocity. We show explicitly that the resulting arbitrary
gauge causal contributions from the two potentials cancel exactly to give a longitudinal electric
field that is instantaneous, acting at a distance, as dictated by the Gauss law of electrostatics.

In section 5, our results are compared with the spacetime results of Brill and Goodman
[4] and of Yang [5]. Although the technical analyses are similar, we find that the longitudinal
electric field is instantaneous, not retarded, even though it is the sum of two retarded terms.
The meaning of action at a distance is reviewed from the modern perspective of quantum
mechanics and quantum field theory.

In teaching electromagnetism, it is important to present the cancellation of the arbitrary
gauge causality in the physical instantaneous longitudinal electric field in an intuitive and
appealing way. We achieve this objective in section 6 by finding a causality-cancelling
combination in spacetime. Its gauge-dependent and causal parts associated with the scalar
and longitudinal vector potentials are then found in k space. A final transformation back to
spacetime shows why the simple expressions in k space look so complicated in spacetime.
We also use the folding theorem of Fourier transforms as a qualitative test for instantaneity in
time and localization in space of physical phenomena.
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In section 7, the relations or transformations between different gauge choices are
described. Even after a gauge is chosen, the scalar and longitudinal vector potentials can
still vary by amounts proportional to the infinitely many gauge functions that are solutions of
a certain homogeneous wave equation.

Finally, in section 8, we show that the gauge degree of freedom appears because light
speed c in vacuum has the same value in all acceptable inertial frames called Lorentz frames.
There is then always a longitudinal direction along which the magnetic induction vanishes,
and the electric field component is instantaneous, acting at a distance. In the quantum
description of light as a particle called the photon, this constancy of light speed comes from
the masslessness of the photon. A massive photon, if it existed, would have a well-defined
and dynamically meaningful longitudinal vector potential. As the photon loses its mass, its
longitudinal vector potential decouples from the two transverse components, and becomes the
redundant appendage called the gauge degree of freedom.

2. Longitudinal and transverse Maxwell equations in materials

The Maxwell equations for electromagnetic fields in ordinary materials in spacetime (r, t) in
SI units, in the notation of Jackson ([1], p 248), are

∇ · B = 0, (1)

∇ × E = −∂tB, (2)

∇ · D = ∇ · (ε0E + P) = ρ, (3)

∇ × H = ∇ ×
(

1

μ0
B − M

)
= J + ∂tD. (4)

Here ∂t ≡ ∂/∂t , while ρ = ρ(r, t), J are the external charge and current densities respectively.
The vector fields E = E(r, t), D, P, B, H, M are assumed to have well-defined second
spacetime derivatives so that wave equations can be constructed. The polarization P and the
magnetization M describe the responses of the material medium to the presence of external
charges and currents. Note that the first two equations hold only in the absence of magnetic
charges. When magnetic charges are present, an additional term ρm and −Jm should appear
on the right-hand side of (1) and (2), respectively.

These fields and their first and second derivatives in spacetime are assumed to have the
Fourier representations

E(r, t) =
∫ ∞

−∞

dω

2π

∫
d3k

(2π)3
eik·r−iωt Ẽ(k, ω), (5)

∇ · E(r, t) =
∫ ∞

−∞

dω

2π

∫
d3k

(2π)3
eik · r−iωt ik · Ẽ(k, ω), (6)

etc. In (6), the spacetime differential operator ∇ acts directly on the Fourier basis function

ψk,ω(r, t) = eik·r−iωt . (7)

In the theory of Fourier transforms, Ẽ(k, ω) may be taken to be the Fourier transform F
of E(r, t), namely

Ẽ(k, ω) = F{E} =
∫ ∞

−∞
dt

∫
d3r e−ik·r+iωtE(r, t). (8)
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The representation (5) is then its inverse Fourier transform. The downside of using Fourier
spaces is that it is necessary to perform this Fourier inversion if one wants the result in
spacetime. So at an introductory level, Fourier spaces are most useful for the qualitative
understanding of an electromagnetic concept for which the complete Fourier inversion back
to spacetime is not essential.

In the Fourier space (k, ω), the Maxwell equations simplify to the algebraic equations

ik · B̃ = 0, (9)

ik × Ẽ = iωB̃, (10)

ik · D̃ = ik · (ε0Ẽ + P̃) = ρ̃, (11)

ik × H̃ = ik ×
(

1

μ0
B̃ − M̃

)
= J̃ − iωD̃. (12)

These equations can be decomposed, term by term, into longitudinal (L or ‖) and transverse
(T or ⊥) components that are respectively parallel and perpendicular to k. In the rectangular
coordinate system defined by the unit vectors e1, e2 and e3 = ek = k/k, an L/T decomposed
vector takes the simple form

Ẽ = Ẽ‖ + Ẽ⊥, (13)

where

Ẽ‖ = Ẽkek, Ẽ⊥ = Ẽ1e1 + Ẽ2e2. (14)

Now in vector algebra, a vector can be transformed into other vectors by left or right
multiplications with second-rank tensors. The nature of these transformations becomes
particularly transparent when the second-rank tensors are written in the unit-tensor expansion

T =
3∑

i,j=1

Tij eiej . (15)

The unit tensor eiej that appears is a dyadic, i.e. a non-commuting product of two vectors [6].
As a two-sided object, a dyadic admits standard vector algebraic operations with vectors on
both left- and right-hand sides, as well as sequential matrix products with other second-rank
tensors. In this paper, we shall need only the two scalar products between the unit tensor/dyadic
eiej and the unit vector em:

eiej · em = eiδjm, em · eiej = δmiej , (16)

where δjm is a Kronecker delta. As a result,

T · Ẽ =
∑
i,j

eiTij Ẽj , Ẽ · T =
∑
i,j

ẼiTij ej . (17)

The L/T projection operators needed for the L/T separation of vector components are the
tensors [7]

Ĩ‖ = ekek, Ĩ⊥ = Ĩ − Ĩ‖ = e1e1 + e2e2. (18)

The L/T separation of a vector field Ẽ can then be realized by using scalar and vector products:

Ĩ‖ · Ẽ = ekek · Ẽ = Ẽ‖ek = Ẽ‖ = Ẽ · Ĩ‖,

Ĩ⊥ · Ẽ = −ek × (ek × Ẽ) = Ẽ⊥ = Ẽ · Ĩ⊥.
(19)

Written as a single equation,

Ẽ = Ẽ‖ + Ẽ⊥ = ek(ek · Ẽ) − ek × (ek × Ẽ), (20)
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this simple algebraic L/T separation is just the Helmholtz theorem of vector calculus, now
reduced to simple vector algebraic projections in the Fourier space (k, ω). We shall show in
the appendix that an inverse Fourier transform of (20) gives the usual integral statement of the
Helmholtz theorem in space. The scalar and vector products

k · Ẽ = kẼ‖, k × Ẽ = k × Ẽ⊥ (21)

in the L/T separated form appear repeatedly in the Maxwell equations.
With L/T separation, the two Maxwell divergence equations become the scalar algebraic

equations

ikB̃‖ = 0, (22)

ikD̃‖ = ik(ε0Ẽ‖ + P̃‖) = ρ̃ (23)

for the ‖ components. In free space, where P̃‖ vanishes, the ω dependence of Ẽ‖ is identical
to that of ρ̃. Their time dependences in spacetime are therefore identical too. Hence E‖(r, t)
responds to the source charge density ρ(r, t) instantaneously, acting at a distance, as we shall
show with more detail in section 6.

Each of the two Maxwell curl equations separates into individual T and L equations

ik × Ẽ⊥ = iωB̃⊥, (24)

iωB̃‖ = 0, (25)

ik × H̃⊥ = ik ×
(

1

μ0
B̃⊥ − M̃⊥

)
= J̃⊥ − iωD̃⊥, (26)

J̃‖ − iωD̃‖ = 0. (27)

The result B̃‖ = 0, stating the absence of magnetic charges, thus appears in two separate
Maxwell equations (22) and (25). Equations (23) and (27) taken together give the continuity
equation

− iωρ̃ + ikJ̃‖ = 0. (28)

In spacetime, J = vρ, where v is the velocity of the charge. Then the continuity equation

∂tρ + ∇ · (vρ) = ∂tρ + v · ∇ρ = d

dt
ρ = 0 (29)

describes charge conservation. Note in particular that charge conservation does not involve
J̃⊥.

3. Wave motion in linear isotropic materials

In linear materials, the contributions of charges and currents induced in the material are
included through the dielectric tensor (or dyadic) ε̃ and the permeability tensor μ̃ [7]:

D̃ = ε̃ · Ẽ, B̃ = μ̃ · H̃. (30)

We shall restrict ourselves to isotropic materials where the only preferred direction is ek. The
chosen rectangular coordinate axes in k space are therefore also the principal axes of these
physical properties. Thus,

ε̃ = ε̃‖Ĩ‖ + ε̃⊥Ĩ⊥ : D̃ = ε̃‖Ẽ‖ + ε̃⊥Ẽ⊥, (31)
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where the dielectric functions ε̃‖, ε̃⊥ are scalar functions of k, ω only. To simplify subsequent
formulae, we shall use a cruder approximation for magnetic properties:

μ̃‖ = μ̃⊥ = μ̃(k, ω) : B̃ = μ̃H̃. (32)

For these linear isotropic materials, (23) simplifies to

Ẽ‖ = − i

kε̃‖
ρ̃. (33)

Thus, Ẽ‖ is completely determined in the Fourier space (k, ω), and can be found in spacetime
by calculating its (inverse) Fourier transform.

The two curl equations for the transverse fields are more complicated:

ik × Ẽ⊥ = iωB̃⊥, ik × B̃⊥ = μ̃(J̃⊥ − iωε̃⊥Ẽ⊥). (34)

After operating on these equations with ik×, we can solve for the ⊥ fields. The results are(
k2 − ω2

v2

)
Ẽ⊥ = iμ̃ωJ̃⊥,(

k2 − ω2

v2

)
B̃⊥ = iμ̃k × J̃⊥,

(35)

where

v(k, ω) = 1√
μ̃ε̃⊥

(36)

has the dimension of a velocity. These are inhomogeneous wave equations in the Fourier
space (k, ω), and v is the wave velocity or speed in the material for the given k, ω values.

To see that these equations describe waves, we go back to the associated partial differential
equations in spacetime with the help of (6) under the simplifying assumption that μ̃, ε̃⊥ and v

are independent of k, ω:(
∇2 − 1

v2
∂2
t

)
E⊥(r, t) = μ∂tJ⊥(r, t),(

∇2 − 1

v2
∂2
t

)
B⊥(r, t) = −μ∇ × J⊥(r, t).

(37)

These partial differential equations are called wave equations, and their solutions, here the
transverse fields, may be called wave functions. We shall not describe the properties of
these wave equations and their solutions in spacetime, as these properties can be found in most
textbooks of electromagnetism. We would only point out that it is the presence on the left-hand
side of each partial differential equation of the term containing both the time derivative ∂t (−iω
in the Fourier space) and the wave speed v that makes the wave functions causal quantities
involving signals propagating with the speed v. Without this term, the differential equations
would have been reduced to Poisson equations. Then B⊥(r, t) would be instantaneous with
J⊥(r, t) if μ is independent of t (or ω in the Fourier space). E⊥(r, t) too would be instantaneous
with ∂tJ⊥(r, t), but not instantaneous with J⊥(r, t) itself. This is because ∂tJ⊥(r, t) at one
time involves more than one time value of J⊥(r, t). A more detailed explanation will be given
in section 6.

In many textbooks, the complete E, B fields are expressed in a causal, actually retarded,
form, when it is only their transverse parts E⊥ and B⊥ that are retarded, according to (37).
Since (22) and (25) require B‖ = 0, it is true that the complete B = B⊥ is retarded. However,
E‖ does not vanish in general. We shall show in the next section how the correct noncausal
nature of Ẽ‖ can be recovered from certain intermediate quantities that are both causal and
dependent on an arbitrarily chosen ‘gauge’ velocity.
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4. Scalar and vector potentials and their gauge degree of freedom

The Helmholtz theorem (20) shows that

B̃ = B̃⊥ = ik × Ã⊥, where Ã⊥ = i

k2
k × B̃⊥. (38)

The wave equation (35) for B̃⊥ can then be written more simply as a wave equation for Ã⊥:(
k2 − ω2

v2

)
Ã⊥ = μ̃J̃⊥. (39)

This wave equation depends on the light speed v in the medium, and is therefore causal, or
more specifically retarded. We shall compare this wave equation for Ã⊥ to that for Ã‖, which
is still to be found.

To find Ã‖, we begin by putting (38) into (24) to get one solution

Ẽ⊥ = iωÃ⊥ (40)

out of many mathematically permissible solutions. It would then be natural to introduce a
‖ component Ã‖ by the equation Ẽ‖ = iωÃ‖, so that Ẽ = iωÃ. However, the alternative
expression Ẽ‖ = −ik�̃ defined by a mathematically equivalent scalar potential �̃ can also be
used.

Historically, different linear combinations of these equivalent forms were used that
ultimately led to the inclusive expression [3]

Ẽ‖ = −ik�̃ + iωÃ‖, (41)

and therefore

Ẽ = −ik�̃ + iωÃ. (42)

It is clear, however, that (41) contains too much freedom of choice. The choice Ã‖ = 0,
called the Coulomb gauge, has the advantage that the associated scalar potential called the
Coulomb potential is, like Ẽ‖ itself, noncausal and instantaneous, acting at a distance.

A more general choice called the velocity gauge [5, 8] is defined by the gauge condition

Ã
(vg)

‖ = α
ω

k
�̃(vg), (43)

where the gauge parameter

α = 1

v2
g

(44)

can be written in terms of a gauge velocity vg . Putting (43) into (41) yields

Ẽ‖ = − i

k

(
k2 − ω2

v2
g

)
�̃(vg). (45)

Finally, the Gauss law (33) can be used to eliminate Ẽ‖ = −iρ̃/kε̃‖ in favour of ρ̃ to give
�̃(vg) and Ã

(vg)

‖ as solutions of inhomogeneous wave equations

�̃(vg) = ρ̃

ε̃‖
(
k2 − ω2

/
v2

g

) , Ã
(vg)

‖ = ω

kv2
g

ρ̃

ε̃‖
(
k2 − ω2

/
v2

g

) . (46)

We see that in general both �̃(vg) and Ã
(vg)

‖ are causal, with the signal propagated between
source and field positions at gauge velocity. Since the gauge velocity is an arbitrary parameter,
this gauge causality is not a physical or gauge-independent property.
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It is even more instructive to use (46) in (41) to give an expression,

Ẽ‖ = k2

k2 − ω2/v2
g

Ẽ‖ − ω2/v2
g

k2 − ω2/v2
g

Ẽ‖, (47)

that shows explicitly that the fractional shares residing in the �̃(vg) and Ã
(vg)

‖ terms vary with
the arbitrary gauge velocity. There are thus infinitely many ways to cut the Ẽ‖ cake, but it is
always the same cake after all. The relation between �̃(vg), Ã

(vg)

‖ and Ẽ‖ is thus not one-to-one,
but many-to-one. This is the redundant gauge degree of freedom.

Finally, the Lorenz gauge is realized by the choice vg = v = 1/
√

μ̃ε̃⊥, with the gauge
velocity set to the physical wave velocity v of the transverse fields. Using this physical wave
velocity as the gauge velocity does not make the resulting gauge causality any more physical
than that in other choices of vg for the instantaneous Ẽ‖ field. The nonphysical nature of
gauge causality, including that in the Lorenz gauge, is not sufficiently emphasized in many
textbooks on electromagnetism.

Another noteworthy feature of the solution Ã‖ given in (46) is that it satisfies the wave
equation (

k2 − ω2

v2
g

)
Ã

(vg)

‖ = 1

v2
gε̃‖

J̃‖, (48)

where ωρ̃/k has been replaced by J̃‖ with the help of the continuity equation (28). This wave
equation is different from the wave equation (39) satisfied by Ã⊥ unless two conditions are
satisfied:

vg = v and ε̃‖ = ε̃⊥. (49)

The Lorenz gauge in vacuum is so popular because these conditions are satisfied (vg = v = c,
and ε̃‖ = ε̃⊥ = ε0). Then all three components of Ã satisfy the same wave equation. In
linear isotropic materials such as plasmas, one finds that ε̃‖ �= ε̃⊥ in general, however. So the
simplicity of the vacuum Lorenz gauge cannot be maintained for many linear materials.

5. Comparison with Brill and Goodman, and with Yang

The technique used in this paper depends on L/T separation, and is therefore the same technique
as that used by Brill and Goodman [4] and by Yang [5]. The only difference is that we work
in the Fourier space where all expressions are algebraic, and therefore much more transparent.
The resulting simplicity is particularly striking in our discussion of the gauge degree of freedom
where it is obvious that A⊥ is not involved at all. We are also able to extend the treatment to
linear isotropic materials, a subject of interest in materials physics. For electromagnetism in
free space already discussed in [4, 5], the important gauge independence of the electromagnetic
fields E, D, B and H is correctly obtained by them, by us and by everybody else.

There are significant technical differences in the results for the Coulomb gauge. In [4]
(p 833), an incorrect Coulomb-gauge condition ∇ · A⊥ = 0 is used. A nonzero term A(C,�)

appears in [5] ((3.30) on p 745) when it should be zero because of the Coulomb-gauge condition
∇ · A = 0. These problems do not seem to affect the rest of the analyses in [4, 5].

We differ from these authors in the conclusion drawn from the similar technical analyses,
however. Our conclusion in its simplest form is that the electrostatic potential of a stationary
charge in vacuum is just the instantaneous Coulomb potential. So the electric field E generated
from it is also instantaneous, acting at a distance. The current J of this stationary charge is
zero. So the charge’s vector potential A and its magnetic induction B both vanish. Here
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then is a simple example where an instantaneous interaction is unavoidable. Such a literal
interpretation of the Maxwell equations in vacuum is accepted by many people, including
Dirac [9]. Let us elaborate on our interpretation.

With the advent of quantum mechanics, the explanation of the instantaneous Coulomb
interaction between two stationary charges in vacuum becomes more detailed. In this more
modern picture, the Coulomb interaction arises from the exchange between the interacting
charges of a virtual photon, the quantum of electromagnetic waves. This virtual photon is
actually a combination of a time-like virtual photon and a longitudinal virtual photon [10],
conforming to the requirement of Maxwellian electromagnetism, because these photons are
respectively the quanta of the scalar and longitudinal vector potentials.

A virtual photon in quantum mechanics, like other virtual particles, does not conserve
energy. It can exist momentarily only because of the Heisenberg uncertainty principle applied
to the energy–time pair of quantized dynamical variables. Thus, virtual particles do not
satisfy the energy–momentum relation of real particles ‘on the energy shell’. In other words,
virtual particles are ‘off the energy shell’. This virtuality is why the potential or field can
exist in all space around the source, instantaneously. Only real particles ‘on the energy shell’
that move with a speed v � c can carry observable messages or signals. Virtual particles
cannot. In particular, they cannot be detected as energy-violating objects, otherwise energy
nonconservation would be observed. In other words, virtual particles are given the liberty of
violating both energy conservation and causality in exchange for being forever unobservable
directly.

In other respects, real and virtual particles are treated alike. For example, the same
mathematical technique for describing particle emission and absorption is used in quantum
mechanics for both real and virtual particles, and for both neutral or charged particles. For
charged particles, Dirac has explicitly written [9]: ‘Whenever an electron is emitted, the
Coulomb field around it is simultaneously emitted, forming a kind of dressing for the electron.
Similarly, when an electron is absorbed, the Coulomb field around it is simultaneously
absorbed’. These processes are caused, for example, by the Hamiltonian (the quantized energy
operator) which ‘applies just to one instant of time’, the instant of emission or absorption.

In quantum field theory, the physical vacuum ceases to be merely empty space. It is instead
a sea of vacuum fluctuations, pervasive in all space and lasting for all times. An individual
vacuum fluctuation exists momentarily, appearing and disappearing as if by magic. Taken
together, vacuum fluctuations form a relatively smooth fabric on which the instantaneous
Coulomb interaction of macroscopic electromagnetism can be realized.

The present-day picture of the physical vacuum is even more sophisticated. In the
presence of charges, the vacuum acts like ordinary materials in that its permittivity ε0 and
permeability μ0 can also change for sufficiently large changes in the spacetime scale of the
physical phenomena involved ([11], pp 339–40). That is, they are also functions of (k, ω),
or equivalently of the energy scale M of the phenomena. Experiments have shown that the
effective electromagnetic interaction strength e2/ε0, where e is the electronic charge, has
increased by 7% from macroscopic physics where M ≈ 0 to phenomena at the mass scale of
M = 100 GeV. It is even expected to increase by another factor of more than 2 by the time
the so-called grand unification scale of 1016 GeV is reached. This is the energy regime where
the weak and strong interactions too can be expected to have the same effective coupling
strength [12].

It thus appears that the Maxwell equations in vacuum do describe charges interacting
instantaneously via the E‖ field, a physical process that is not subject to the relativistic
limitation of all measurable speeds to c or less. However, the Maxwellian theory does not
explain why this classical picture of action at a distance should hold.
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In contrast, [4, 5] almost 40 years apart both conclude that the entire E(r, t) in vacuum,
including E‖(r, t), is retarded. Their conclusion is based on the assumption that since each of
the four contributions (from the three vector potential components and one scalar potential)
to the Lorenz gauge E(r, t) is individually retarded, their total E(r, t) must be retarded as
well. This assumption is incorrect because, as we have shown in section 4, the two retarded
contributions from �̃(vg) and Ã

(vg)

‖ actually add up to an instantaneous Ẽ‖ for any gauge.
The gauge independence of this instantaneous field component is an important feature of
Maxwellian electromagnetism.

6. The instantaneous and gauge-independent E‖

The unexpected metamorphosis of two gauge causal terms in vacuum into an instantaneous
interaction in Ẽ‖ is sufficiently important in teaching electromagnetism to merit an explicit
demonstration of how it materializes in spacetime itself. We begin by relating the Helmholtz
and Poisson equations in space:(

∇2 +
ω2

v2
g

)
e±iωR/vg

4πR
= −δ3(R) = ∇2 1

4πR
, (50)

where R = r − r′. The Helmholtz solutions are the retarded (upper + sign) and advanced
(lower − sign) Green functions of Jackson [1], (6.40) on p 244. The Poisson Green function
is just the special case when ω/vg = 0. It is neither retarded nor advanced, but instantaneous,
as in electrostatics.

In the Fourier space k, (50) becomes the trivial algebraic identity (writing the Poisson
side first)

k2 1

k2
= 1 =

(
k2 − ω2

v2
g

)
1

k2 − ω2/v2
g

. (51)

Multiplying the entire equation by ρ̃/ε0k
2 and eliminating the charge density ρ̃ on favour of

the longitudinal current density J̃‖ from the continuity equation (28) in the second term on the
Helmholtz side of the equation, we get

1

ε0k2
ρ̃ = 1

ε0k2

(
k2ρ̃ − ωk

v2
g

J̃‖

)
1

k2 − ω2/v2
g

. (52)

A final multiplication by −ik gives

Ẽ‖(k, ω) = Ẽ
(C)
‖ (k, ω) = − ik

ε0k2
ρ̃

= −ik�̃(vg) + iωÃ
(vg)

‖ , (53)

where

�̃(vg) = ρ̃

ε0
(
k2 − ω2

/
v2

g

) , Ã
(vg)

‖ = J̃‖/v2
g

ε0
(
k2 − ω2

/
v2

g

) . (54)

We are now ready to invert the Fourier transform in k, as defined by

f (r) = F−1{f̃ (k)} =
∫

d3k

(2π)3
eik · rf̃ (k). (55)

We shall need the convolution or folding theorem [13] and the inverse Fourier transform
from (50)
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F−1{f̃ (k)g̃(k)} = [f ∗ g](r) =
∫

d3r ′f (r − r′)g(r′), (56)

F−1

{
1

k2 − ω2/v2
g

}
= e±iωr/vg

4πr
. (57)

A straightforward calculation then yields the desired connection between the results in the
instantaneous Coulomb gauge and the general velocity gauge in the space (r, ω/t), where ω/t

means either ω or t:

E
(C)
‖ (r, ω/t) = −∇�(vg)(r, ω/t) + iωA

(vg)

‖ (r, ω/t), (58)

where the iω factor in the second term on the velocity-gauge side stands for the time differential
operator −∂t if the space is (r, t). (58) is the desired instantaneous and gauge-independent
longitudinal electric field.

The functions in the (r, ω) space that appear in (58) can be obtained by straightforward
(inverse) Fourier transformations:

Ẽ
(C)
‖ (r, ω) = −∇

∫
d3r ′ ρ̃(r′, ω)

4πε0|r − r′| ;

�̃
(vg)

‖ (r, ω) =
∫

d3r ′ e
±iω|r−r′ |/vg ρ̃(r′, ω)

4πε0|r − r′| ,

Ã
(vg)

‖ (r, ω) =
∫

d3r ′ e
±iω|r−r′ |/vg J̃‖(r′, ω)/v2

g

4πε0|r − r′| ,

(59)

where J̃‖ is from the Helmoltz theorem (A.6) in space

J̃‖(r′, ω) = −∇′
∫

d3r ′′ ∇′′ · J̃‖(r′′, ω)

4π |r′ − r′′|
= −iω∇′

∫
d3r ′′ ρ̃(r′′, ω)

4π |r′ − r′′| . (60)

The corresponding functions in (r, t) are easily obtained:

E
(C)
‖ (r, t) = −∇

∫
d3r ′ ρ(r′, t)

4πε0|r − r′| ;

�
(vg)

‖ (r, t) =
∫

d3r ′ ρ(r′, t ∓ |r − r′|/vg)

4πε0|r − r′| ,

A
(vg)

‖ (r, t) =
∫

d3r ′ J‖(r′, t ∓ |r − r′|/vg)/v
2
g

4πε0|r − r′| ,

J‖(r′, tr ) = ∂t∇′
∫

d3r ′′ ρ(r′′, tr )
4π |r′ − r′′| .

(61)

They agree with those found in [4, 5].
From the perspective of teaching electromagnetism at an introductory level, the solutions

of the Helmholtz equation given in (50) may be considered too advanced a result. The folding
theorem (56) is quite elementary, however, once Fourier transforms are used. The folding
theorem alone enables the concepts of locality in space and instantaneity in time to be discussed
at an introductory qualitative level, without the need to actually work out the precise inverse
transforms. This is possible because the folding theorem shows that two functions with the
same k dependence must be localized relative to each other in space. This is so because both
functions are the same function in space. Similarly, two functions with the same ω dependence
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must be instantaneous in time. Conversely, two functions with different k (or ω) dependences
must be nonlocal (or non-instantaneous) in space (or time).

Let us then use this qualitative instantaneity/localization test on certain ω/k dependent
expressions we have constructed in the preceding sections. Consider first electromagnetism in
free space, where ε0 and μ0 are independent of k or ω in the Maxwellian theory respectively.
Then Ẽ‖(k, ω) = −iρ̃(k, ω)/kε0 of (33) and ρ̃(k, ω) have the same ω dependence but different
k dependences. Hence, E‖(r, t) is instantaneous with, but not localized at, the charge density
ρ(r, t). That is, E‖(r, t) is action at a distance. By the same test, both the transverse fields
Ẽ⊥(k, ω) and B̃⊥(k, ω) are non-instantaneous (i.e. causal) and nonlocal in spacetime relative
to their sources.

In linear materials, where ε̃ and μ̃ depend on k and ω respectively, the test shows that
in Ẽ‖ = −iρ̃/kε̃‖, the instantaneity between E‖ and ρ is lost. The external charge density ρ

gives rise instantaneously to the field D‖. The polarized response of the material is retarded
relative to the external ρ, but as the polarization charges appear, they generate their electric
fields simultaneously and instantaneously, in exactly the way Dirac has described.

7. Gauge transformations

Even after a gauge is chosen, the resulting potentials are still not uniquely determined, as we
shall now demonstrate.

Consider the general gauge change or transformation

Ã‖ → Ã′
‖ = Ã‖ + ikχ̃ ,

�̃ → �̃′ = �̃ + iωχ̃,

α → α′ = α + β.

(62)

The change 
Ã‖ = ikχ̃ comes from the spatial vector field ∇χ(r, t) generated from a
scalar field χ(r, t) whose dimensional unit of measurement is chosen to be consistent with the
dimension of A(r, t). The change 
�̃ = iωχ̃ then has the same dimension as �̃. Furthermore,
the resulting electric field component

Ẽ′
‖ = −ik�̃′ + iωÃ′

‖ = Ẽ‖ (63)

remains unchanged, i.e. gauge independent, for any gauge function χ̃ .
We should now mention the indispensable role A‖ plays indirectly in the Lorentz

covariance of the Maxwell equations discovered by Einstein in 1905 [14]. This Lorentz
covariance refers to the invariance in form of the Maxwell equations under a Lorentz
transformation to another special inertial frame called a Lorentz frame (where the time variable
also changes in order to keep light speed at its universal value c). One can find in most textbooks
on electromagnetism how this Lorentz covariance is assured if the 4-potential Ãα = (Ã, i�̃/c)

is a 4-vector in the Minkowski four-dimensional spacetime. It then transforms under Lorentz
transformations like any other 4-vector such as kα = (k, iω/c). Ã‖ is a needed component
of this 4-potential. Furthermore, the new potential defined by (62), namely Ã′

α = Ãα + iχ̃kα ,
is also a 4-vector, transforming correctly under Lorentz transformations. Electrodynamics,
including quantum electrodynamics, becomes mathematically simpler and physically more
transparent when expressed in terms of these 4-potentials.

The yet undetermined gauge function χ̃ must also satisfy the gauge condition

Ã′
‖ = (α + β)

ω

k
�̃′. (64)
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Used with the old gauge condition (43), this equation can be simplified into the inhomogeneous
wave equation

[k2 − (α + β)ω2]χ̃ = −iωβ�̃. (65)

For β = 0, the gauge condition or choice (43) is unchanged. The driving term on the right-
hand side of (65) then vanishes. The resulting homogeneous wave equation is satisfied either
when χ̃ = 0 (an uninteresting possibility or a trivial solution), or when χ̃ = χ̃0 �= 0, but
k2 = αω2. Since k2 comes from the space differential operator ∇2, while ω2 comes from the
time differential operator ∂2

t , the second possibility is satisfied only by the solutions χ0(r, t)

of the homogeneous wave equation in spacetime. The functions χ̃0(k, ω) that now appear
in (65) are their Fourier transforms. These gauge functions define a class of gauge changes
called restricted gauge transformations.

The gauge change (62) even allows for a change of the gauge condition if β �= 0. Then
an additional gauge function that is the solution of the inhomogeneous wave equation (65),
namely

χ̃ = −i
ωβ�̃

k2 − (α + β)ω2
, (66)

is needed in addition to those for restricted gauge transformations that do not change the
gauge condition. These more general gauge transformations are called unrestricted gauge
transformations.

Other gauges have been used with gauge conditions specified in spacetime. For such
gauges, our treatment in the Fourier space (k, ω) does not appear to offer any advantage.
These special gauges have been discussed in the recent review by Jackson [8].

8. The physical origin of the gauge degree of freedom

Why should there be a gauge degree of freedom? We follow the explanation given by Zee
([11], pp 168, 171, 456), and elaborate on it.

The physical origin of the gauge degree of freedom lies at one of the most striking features
of the Maxwell equations, a feature abstracted by Einstein into one of the two pillars of his
special theory of relativity. As he wrote in his epochal 1905 paper on ‘The electrodynamics
of moving bodies’ [14], ‘light is always propagated in empty space with a definite velocity c
which is independent of the state of motion of the emitting body’. In other words, the direction
of light propagation in vacuum might change in a different Lorentz frame of reference. Light
speed in vacuum will never decrease, and certainly will not decrease to zero. Hence, in every
Lorentz frame where a light beam appears, there is a unique direction êk = ê‖ along which
it propagates. Each of the electromagnetic fields E⊥, B⊥ responsible for its propagation is
always made of two independent components in the perpendicular directions e1 and e2 in that
Lorentz frame. As we say in optics, light has only two directions of polarization. We shall
explain below how these two polarization states materialize in quantum mechanics as the two
transverse states of the intrinsic spin of the photon, the quantum of electromagnetic waves.

When relativity is applied to the kinematics of a point particle of mass m, velocity
v, momentum p and energy E in a Lorentz frame, Einstein obtained the famous energy–
momentum relation

E2 − p2 = m2, (67)

for the relativistic momentum

p = γmv, where γ = 1√
1 − v2/c2

. (68)
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This relativistic kinematics restricts the velocity v of all massive particles of finite momentum
or energy to finite values of γ , and to velocities less than c:

v = c
√

1 − γ −2 < c. (69)

If light is considered a particle, its invariant velocity c will require that γ = ∞. When
Compton scattering was discovered [15], light was found to have indeed the attributes of a
particle of finite energy E and momentum p. These attributes are consistent with (68) only if
the mass of a photon is exactly zero.

A photon in a beam of light described by the Fourier basis function ψk,ω(r, t) of (7) has
a wave vector k and frequency ω. The quantum wave–particle duality of the photon is then
expressed by the quantum relations

p = h̄k, and E = h̄ω, (70)

where h̄ is the reduced Plank constant. The photon, like any other particle, also has an
orbital angular momentum vector � = r × p. This vector must therefore lie on the plane
perpendicular to ek = e3, with only two independent components �1 and �2, just like A⊥, in
any Lorentz frame. We thus see that the absence of a physically meaningful and therefore
gauge-independent A‖ component has the same physical origin as the absence for the massless
photon of the component �3 = �‖ of its orbital angular momentum vector, namely the fact that
the massless photon always moves with light speed c in vacuum in any Lorentz frame.

The inaccessibility of the longitudinal components of these vectors A and � may appear
a little unsatisfactory, but modern physics, i.e. special relativity and quantum mechanics, now
come to the rescue. Consider first a massive particle that can only move with speed v < c.
It is then possible to go to a Lorentz frame where the particle is at rest. In this rest frame,
the particle’s orbital angular momentum vanishes because its momentum p vanishes. Now
it has been found in quantum mechanics that all massive particles at rest have an intrinsic
spin or intrinsic angular momentum vector s whose length parameter s can only take one of
the permissible values of s = 0, 1/2, 1, 3/2, . . . (in units of h̄). In addition, its projection sz

along any coordinate axis ez in space can only have values that differ from one another by an
integer (in units of h̄). Since sz is a projection of s, it also satisfies the constraint |sz| � s.
Both constraints are satisfied by the 2s + 1 possible values of sz in the range −s � sz � s.
For example, a particle with s = 1 can only have the three z-projections of sz = 1, 0 or −1.
Furthermore, in the rest frame of a massive particle, there is no preferred direction in space.
All three components of its intrinsic spin vector s are dynamically equivalent.

The spin vector s is also called an angular momentum vector, because it is found to have all
the properties of the particle’s orbital angular momentum vector � when the particle is moving.
Only then can the two angular momenta of a moving particle be added together to form a total
angular momentum j = � + s, as Pauli [16], and Uhlenbeck and Goudsmit [17] found in their
explanation of the anomalous Zeeman effect. (The anomalous Zeeman effect has its origin in
the unexpected doubling of the number of atomic energy levels in certain atoms in a magnetic
field. It is caused by the intrinsic spin of the electron.) So for massive particles in motion,
all three components of their orbital and total angular momenta are dynamically equivalent as
well.

Massive particles of intrinsic spin s = 1 are called vector bosons, vector because its s

vector has three quantized sz values, matching the number of components of a vector in space.
Any particle whose intrinsic spin s is an integer is called a boson, named after Bose, the famous
Indian contemporary of Einstein. The photon too has been found to be a vector boson. If the
photon were massive, it too would have a rest frame where there is no preferred direction in
space. Its three intrinsic spin projections sz would be just the three polarization states. Then
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all three components of its vector potential A would be accessible and dynamically equivalent,
and the gauge redundancy would disappear. Quantum mechanics would thus work its magic
in the massive photon’s rest frame, turning the ugly toad of gauge redundancy into a handsome
prince of dynamical wholesomeness.

So, as a massive photon becomes massless, it acquires the universal light speed c in all
Lorentz frames. It loses its rest frame. Condemned to perpetual motion, both its orbital
and intrinsic angular momentum vectors become forever confined to the transverse plane
perpendicular to its direction of motion. Its Ã‖ too decouples from the two dynamical
transverse components. It is made accessible to dynamics only by sharing the function with
the scalar potential. It becomes our redundant gauge degree of freedom.

Appendix. Helmholtz theorem

The usual and customary integral form of the Helmholtz decomposition of a vector field in
space into a gradient part and a curl part can be obtained by evaluating the inverse Fourier
transform of (20). The ω variable is actually not involved, and will be suppressed here. Hence,
we consider the inverse Fourier transform F−1, as defined by (5) and reproduced here without
its ω or t dependence as

E(r) = F−1{Ẽ(k)} =
∫

d3k

(2π)3
eik · rẼ(k). (A.1)

Such inverse Fourier transforms can handle the unit vector ek readily only in the original
vector/scalar form k/k. So we begin by writing the vector field Ẽ(k) in (20) in the alternative
dyadic form

Ẽ(k) = Ẽ‖ + Ẽ⊥ = k
1

k2
(k · Ẽ) − k × 1

k2
(k × Ẽ). (A.2)

The inverse Fourier transform E(r) of (A.2) can be found readily by using inverse
transforms such as

F−1{k} = −i∇, (A.3)

F−1{ik · Ẽ} = ∇ · E(r), (A.4)

F−1

{
1

k2

}
= 1

4π |r| . (A.5)

Each term on the right-hand side in (A.2) contains three k factors. The middle 1/k2 factor can
be treated in two equivalent ways giving the same nonlocal kernel. The nonlocal kernel comes
either from the convolution or folding theorem (56) applied to a product of functions of k in
the Fourier space k, or from the nonlocal operator 1/k2 in space that requires an integral over
r′, as done in quantum mechanics. In both cases, one finds the integral Helmholtz theorem in
space, with

E‖(r) = −∇
∫

d3r ′ 1

4π |r − r′|∇
′ · E‖(r′),

E⊥(r) = ∇ ×
∫

d3r ′ 1

4π |r − r′|∇
′ × E⊥(r′).

(A.6)
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