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Abstract
We discuss carefully the blackbody approximation, stressing what it is (a
limit case of radiative transfer), and what it is not (the assumption that
the body is perfectly absorbing, namely black). Furthermore, we derive
the Planck spectrum without enclosing the field in a box, as is done in
most textbooks. Although convenient, this trick conceals the nature of the
idealization expressed in the concept of a blackbody: first, the most obvious
examples of approximate blackbodies, stars, are definitely not enclosed in
boxes; second, the Planck spectrum is continuous, while the stationary modes
of radiation in a box are discrete. Our derivation, although technically less
elementary, is conceptually more consistent, and brings the opportunity to
introduce to advanced undergraduate and graduate students the important
concept of the local density of states via the resolvent formalism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Planck’s law for blackbody radiation is celebrated as a landmark in the history of physics,
being the first physical law conflicting patently with classical mechanics. Derived in 1900,
it is usually regarded as the igniter of the century of quantum mechanics. But its relevance
goes beyond quantum mechanics. Blackbody radiation is a striking example of universality in
statistical mechanics—the light radiated by a blackbody does not depend on its constitution,
but only on its temperature—a topic which came to the foreground with the later studies of
critical phenomena. More recently, Planck’s distribution has appeared to fit with an astounding
accuracy the cosmic microwave background (deviations are at most 50 per million [1]), thus
opening the era of precision cosmology.

Because of its seminal importance, one feels that the derivation of Planck’s law
presented to students should be as lucid as possible. In most textbook presentations
[2–8], however, one apparently innocuous step undermines the understanding of its
applicability: the radiation field is assumed to be enclosed in a box. This prompts students to
think that the Planck spectrum is the one radiated by a blackbox. This is true, of course, but
also very misleading. If the blackbody radiation is really the blackbox radiation, why would
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stars, which are not enclosed in boxes, have a Planckian spectrum? Why whould hot metal
bars, bulb filaments, incandescent lava or the background of the universe have a Planckian
spectrum?

Since the physics of thermal radiation generally does not involve a box, we feel that the
discussion of Planck’s law should not either. In this paper, we propose such a discussion.
We introduce the blackbody approximation in the framework of radiative transfer theory, and
derive the Planck spectrum using the notion of the local density of states (LDOS). We do not
claim originality in the method used, the resolvent formalism, which is standard in condensed
matter physics and scattering theory. Rather, our aim is to promote an approach we believe to
be pedagogically more transparent. (See also [9] for a more advanced discussion of Planck’s
law from the many body theory perspective.)

Our derivation of Planck’s law is suitable for advanced undergraduate and graduate
students studying condensed matter and their teachers. In our opinion, it would best
be presented as complementary to the standard one: mathematically less elementary, but
conceptually cleaner. This would provide an opportunity to communicate to students the
general principle that one always ought to look for several ways to solve the same problem1.

The paper is organized as follows. In the following section, we discuss the blackbody
approximation and its relation with Kirchhoff’s law. In section 3, we define the local density
of states and derive Planck’s law without the box, using the resolvent formalism. Section 4
presents our conclusion.

2. What is a blackbody?

2.1. The common definition

A blackbody is usually defined as ‘a body which completely absorbs all radiation incident on
it’. Landau and Lifschitz [2] add:

Such a body can be realised in the form of a cavity with highly absorbing internal
walls and a small aperture. Any ray entering through the aperture can return to it
and leave the cavity only after repeated reflection from the walls of the cavity. When
the aperture is sufficiently small, therefore, the cavity will absorb practically all the
radiation incident on the aperture, and so the surface of the aperture will be a black
body.

Clearly, this picture makes perfect experimental sense. Theoretically, on the other hand,
the nature of the idealization it is meant to express remains clouded. If a blackbody emits light,
why is it called ‘black’? And if it is an ideal emitter, why is it defined as an ideal ‘absorber’?
What is the role of the cavity? More importantly, what would an imperfect blackbody be? A
cavity which does not absorb all incident radiation? One with a bigger aperture?

2.2. A continuous spectrum

Many objects emit light like imperfect blackbodies. The most prominent among them is,
of course, our Sun (see figure 1). Its spectrum, first measured in the early 19th century
by Wollaston and Frauhofer, is well approximated by that of a blackbody of temperature
between 5500 and 6000 K. It does display deviations from it, the so-called Fraunhofer lines
(corresponding to the absorption of certain frequencies by the solar atmosphere), but it is

1 As it happens, when asked what he would change in his career if had the chance to, Feynman replied [22]: ‘I would
try to forget how I had solved a problem. Then, each time the problem arose, I might solve it in a different way—I
wouldn’t be thinking about how I had solved it before’.
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Figure 1. The Sun is an imperfect blackbody, monoatomic gases are not (top: hydrogen; bottom:
iron).

indisputable that, although very dissimilar from an absorbing cavity with a tiny hole, the Sun
qualifies as an imperfect blackbody. On the other hand, the spectroscopy of monoatomic gases
shows clearly that their emission spectrum is not Planckian. They emit only certain discrete
frequencies, determined by the electronic structure of the atoms2.

This observation hints at what a blackbody really is: a body with a rich energy spectrum,
capable of exciting all frequencies of light by thermalization3.

From this perspective, the box definition appears paradoxical. As is well known, a closed
box selects certain light frequencies, through the condition ωi = nπc/Li , where Li is the
dimension of the box in the i-direction. Thus, instead of permitting a wide range of thermally
excited frequencies, the box restricts the emission spectrum, even making it discrete. Of
course, one could argue that the volume of the box can be made arbitrarily large, and therefore
this quantization of frequencies is not physically relevant. But this is precisely our point: as
far as the frequencies of light are concerned, the box is not physically relevant.

2.3. Kirchhoff’s law

In its standard definition, a blackbody is one that ‘absorbs all incident light’—a black body.
This fact alone should disturb the mindful student: how can a body be black, and yet emit a

2 Of course, a gas does have a continuous energy spectrum, corresponding to processes in which electrons are
removed from their bound states with the nuclei—photoionization. These, however, require higher energies, and this
is why they are not easily seen with monoatomic gases. See [18–20] for a discussion of the transition from discrete
to continuous spectra in gases.
3 This condition is salient in the case of the electromagnetic field because of its (quasi-)linearity: photons of different
frequencies interact very little, and therefore cannot thermalize among themselves efficiently.
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colourful spectrum of thermal light? In any case, what does the absorptive power of a body
have anything to do with the characteristics of its thermal emission?

The answer lies in an experimental observation which played a key role in the 19th century
developments which led to Planck’s successful analysis of thermal radiation, and which is too
seldom mentioned in undergraduate discussions of thermal radiation—Kirchoff’s law [8, 10].

The radiative properties of a body are characterized by its emissivity and absorptivity (and
scattering, which can usually be neglected). These can be defined by the following schematic
model for the propagation of radiation within a medium [11]. As the (monochromatic) beam
travels through the medium, along a ray coordinatized by l, the variation of its energy density
u(l, ω) receives two contributions: a positive one, corresponding to emission, and a negative
one, corresponding to absorption:

du

dl
(l, ω) = ε(ω) − α(ω)u(l, ω). (1)

The coefficients ε(ω) and α(ω) are the emissivity and absorptivity of the body, respectively.
Now, Kirchoff’s law states that, although ε(ω) and α(ω) largely depend on the constitution of
the material, at thermal equilibrium, their ratio JT (ω) ≡ ε(ω)/α(ω) is universal; it depends
on temperature and frequency only. A good absorber (α(ω) large) at a certain frequency is
also a good emitter (ε(ω) large) at that frequency, and vice versa.

At this point, our mindful student’s worries should already be eased: if Kirchhoff’s law
is right, then blackbodies, which are by definition excellent absorbers, must also be excellent
emitters. But further reflection should reveal a caveat in this line of thought: emissivity and
absorptivity usually depend on the actual material used, while the blackbody radiation it emits
does not. Why is that?

Some insight into this question is provided by the following consideration, due to Einstein
[12]. The interaction between matter and radiation boils down to transitions between energy
levels: given two levels a and b, with respective energies Ea < Eb, absorption corresponds to
an upgoing transition a → b, while emission corresponds to a downgoing transition b → a.
The rate of these transitions, %a→b and %b→a , is what controls at the microscopic level the
absorptivity and emissivity of the body. Now, the condition of thermal equilibrium fixes the

probabilities of each level, through the Gibbs distribution pa,b ∝ e− Ea,b
kB T . But, and this is the

key point, it has no bearing on the transition rates %a→b and %b→a themselves, but only on
their ratio. Indeed, in this microscopic perspective, thermal equilibrium translates into the
condition of detailed balance, according to which the probability flux between microstates
cancel exactly:

pa%a→b = pb%b→a. (2)

This leads to
%a→b

%b→a

∝ e− h̄ωab
kB T , (3)

in which the rhs is a function of the transition frequencyωab and temperature only. Kirchhoff’s
law is a consequence of this constraint on the transition rates imposed by detailed balance4.

Combining the phenomenological radiative transfer equation (1) with Einstein’s
microscopic model, we understand that the thermal equilibrium of the material source, through
the condition of detailed balance, constrains the ratio of emission to absorption—Kirchhoff’s
law—but not their respective rates independently: this is why different materials have different

4 In fact, Einstein derived the Bose–Einstein distribution from detailed balance, understanding that both spontaneous
and stimulated emissions are required for the coexistence of thermal radiation and thermal matter [21].
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thermal emission and absorption properties. It is only under a further assumption that a
universal function describing blackbody emission, namely Planck’s function, can be obtained.

What is this further assumption? Is it that the body ‘absorbs all light incident on it’, as in
the standard definition? In other words, that the body be perfectly absorbing (‘black’) on the
whole spectrum? No! Such a material does not exist5. That is, the condition of ‘blackness’
entering the standard definition of a blackbody cannot be the idealization underlying blackbody
radiation. Then what is it?

2.4. Optical thickness

The answer should be obvious by now: the additional condition is that the radiation field
itself should be at thermal equilibrium. This means that the random processes of emission
and absorption of light by the hot body should have reached their stationary state. Solving (1)
with the initial condition u(l = 0, ω) = 0, we find

u(l, ω) = (1 − e−α(ω)l)JT (ω). (4)

In particular, we see that if α(ω)l % 1, the so-called optically thick limit, the observed energy
density is given by JT (ω), which is nothing but the Planck spectrum. In other words, the
coefficient α(ω) measures the rate of convergence of the emitted light to its equilibrium value
JT (ω)—the blackbody approximation is just the condition that α(ω)l % 1. This is achieved
not only for good absorbers (α(ω) large), but also for objects involving long optical paths
(l large).

This is precisely what a closed cavity does: it provides the conditions for this convergence
process to take place, whatever the intrinsic properties ε and α of the material within the cavity.
The box, in other words, is a useful expedient for the actual production of thermal radiation in
the laboratory when the hot body is not black: it permits us to reach the optically thick limit
even if the absorptivity is low, because it generates very long paths l within the material6. But
the presence of a box is of course not a necessary condition for the thermalization of light:
stars too are optically thick—and this is why their spectrum looks Planckian.

3. Planck’s law without the box

3.1. Partition of energy

From the previous discussion, we know that the equilibrium spectral energy density coincides
with the function JT in Kirchoff’s law: the energy contained in thermal radiation within an
infinitesimal volume d3x about a point x in the frequency range dω is

dE(x, ω) = JT (x, ω) d3x dω. (5)

How can one compute this function? The answer to this question is obvious when one
recalls that the total energy of the field is distributed over its modes, and that modes with the
same frequency ω are degenerate, i.e. store the same energy. Hence

dE(x, ω) = (energy of each ω-mode) × (occupation number of each ω-mode)

×(number of ω-modes accessible at x). (6)

5 For the emissivity to not depend on the frequency, Thomson scattering should be the dominant process in the
matter–radiation interaction, and this cannot be the case near thermal equilibrium.
6 This explains Landau and Lifschitz’s otherwise cryptic observation that the blackbody is not the cavity itself, but
the ‘surface of [its] aperture’.
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Figure 2. Balance between the LDOS, the energy per mode and the Bose–Einstein distribution.

From quantum mechanics, we know that the energy stored in a mode with frequency
ω is E(ω) = h̄ω. Moreover, the occupation number nT (ω) of each such mode at thermal
equilibrium is given by the Bose–Einstein distribution:

nT (ω) = 1

e
h̄ω

kB T − 1
. (7)

It follows that the thermal energy density JT (x, ω) is given by

JT (x, ω) = h̄ω

(
1

e
h̄ω

kB T − 1

)

ρ(x, ω), (8)

where ρ(x, ω) denotes the density of modes with frequency ω around the point x. Indeed,
for an observer localized at x, certain modes might be inaccessible, or only partly accessible:
ρ(x, ω) is the space-resolved density of modes, often called (using quantum mechanical
parlance) the local density of states. Of course, if the medium is homogeneous, this quantity
does not depend on x. However, in more general situations (such those described at the end of
the following section), it does.

All in all, the Planck spectrum can be described as the outcome of the balance between the
energy per mode and the LDOS, which tends to grow as ω gets large, and the Bose–Einstein
distribution, which favours the low-frequency modes. This is illustrated in figure 2.

3.2. A hint of spectral theory

The reason why the evaluation of the LDOS is non-trivial mathematically is because the light
frequencies span a continuous spectrum. Had it been discrete, the LDOS would just have been
the degeneracy of ω, understood as an eigenvalue of the wave operator. In the continuous case,
however, the notion of degeneracy is subtler, for it involves the definition of a measure on the
spectrum. This is analogous to the ambiguity one faces when trying to extend a discrete sum
to an integral: the appropriate weighting of the integration variable is not obvious anymore.
The case of the standard measure on the sphere, which involves a factor sin θ , is an obvious
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example of such subtleties. Of course, in this case, the appropriate measure is determined by
the condition of rotational invariance. What determines the spectral measure of an operator?

A powerful tool to answer such a question is the ‘resolvent formalism’, also known as
‘Green’s function method’ [13, 14]. Given a (self-adjoint) operator A, the resolvent is the
operator-valued function of the complex variable z defined by

R(z) = (A − z)−1. (9)

By construction, R(z) is analytic in C \ σ(A), the complement of the spectrum of A. The
discrete part of σ(A) corresponds to the isolated poles of R(z), while the continuous part of
σ(A) generates a branch cut along the real axis. In other words, the spectrum of A is encoded
in the analytic structure of R(z).

Given any two vectors ψ and φ, it follows from the spectral theorem that

〈ϕ|R(z)ψ〉 =
∫

σ(A)

dµϕ,ψ(λ)

λ− z
=

∑

λ∈σd (A)

g(λ)

λ− z
+

∫

σc(A)

ρϕ,ψ(λ) dλ
λ− z

, (10)

where dµϕ,ψ is the spectral measure associated with ϕ and ψ , and in the second equality the
spectrum is decomposed into its discrete σd(A) and continuous σc(A) parts7. The spectral
density ρϕ,ψ(λ) is therefore defined as the density of the continuous part of the spectral measure
dµϕ,ψ with respect to the Lebesgue measure dλ.

When A is a wave operator with purely continuous spectrum, and (ϕ, ψ) = (x, y) are
position (generalized) eigenvectors, the quantity G(x, y; z) = 〈y|R(z)x〉 is called in the
physics literature the ‘Green function’. The spectral decomposition of its diagonal elements
G(x, x; z) reads

G(x, x; z) =
∫

σc(A)

ρx(λ) dλ
λ− z

. (11)

This expression provides the spectral density ρx(ω) with the following interpretation: the
generalized eigenvalue λ, when analysed through a state localized at the point x, comes with
a weight ρx(λ). This weight is the overlap of the density of λ-eigenmodes with the local state
|x〉—in other words, the LDOS ρ(x, λ) of A.

Moreover, formula (11) indicates a procedure to evaluate ρx(λ). Indeed, just as the
degeneracy g(λ) of an isolated eigenvalue λ can be read off (10) as the residue of 〈y|R(z)x〉 at
z = λ, the LDOS is given by the discontinuity of G(x, x; z) along the branch-cut singularity.
This is the so-called Stieltjes–Perron inversion formula (appendix A)

ρ(x, λ) = 1
2iπ

lim
ε→0

.εG(x, x; λ), (12)

with

.εG(x, x; λ) = G(x, x; λ + iε) − G(x, x; λ− iε). (13)

3.3. The resolvent of the Laplace operator

Let us apply this resolvent formalism to the case of electromagnetism. For the sake of
simplicity, we shall consider here the scalar Helmholtz equation—the two independent
polarizations of the field will be taken into account a posteriori by multiplying the LDOS
thus obtained by a factor of 2.

7 We disregard subtleties related to singular spectra.
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Figure 3. LDOS versus frequency at different heights above a semi-infinite sample of aluminium.
The resonance around 1016 rad s−1 corresponds to the excitation of surface-plasmon polaritons.
Reprinted figure with permission from Joulain et al [15]. Copyright (2011) by the American
Physical Society.

The Helmholtz equation for a monochromatic wave φω in a homogeneous medium (the
‘blackbody’) reads

−.φω(x) = ω2

c2
φω(x), (14)

which is an eigenvalue equation for the Laplacian, with eigenvalue λ = ω2/c2. We introduce
the resolvent (−. − z)−1, and evaluate the corresponding Green function G(x, y; z) by the
Fourier transform

G(x, y; z) =
∫

d3k

(2π)3

eik·(x−y)

k2 − z
. (15)

3.4. Obtaining the LDOS

The two integrals G(x, y; λ ± iε) are readily evaluated by residue calculus (appendix B)
yielding

lim
ε→0

.εG(x, x; λ) = i
√
λ

2π
= iω

2πc
. (16)

Using (12) and the fact that dλ = 2ω/c2 dω, we obtain the electromagnetic LDOS (with
a factor of 2 for the two polarizations)

ρ(x, ω) = ω2

π2c3
. (17)

Note that, as expected, the translational invariance of the medium translates into the
independence of the LDOS on the space point x. Plugging this value into (8) immediately
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yields Planck’s law,

JT (ω) = h̄ω3

π2c3

1

e
h̄ω

kB T − 1
. (18)

3.5. Surface effects

We conclude this section by an illustration of the strength of the LDOS method for a finer
analysis of thermal radiation, in particular close to a metallic surface. At a distance from the hot
body comparable to the thermal wavelength, the spatial homogeneous approximation breaks
down as the field reveals evanescent modes and polariton excitations. Such local excitations
have been shown to modify significantly the LDOS, and hence the hot body spectrum, notably
by enhancing monochromaticity (figure 3), spatial coherence and directivity [15–17]. This
shows another facet of the blackbody approximation which is not usually emphasized: it is a
far-field approximation.

4. Conclusion

In this paper, we have tried to disentangle two aspects of the standard picture of a blackbody
as a cavity with a small aperture. The first one relates to the efficiency of the thermalization
of light through its almost everlasting interaction with the walls of the cavity: this is the
one invoked in Landau and Lifschitz’s definition. Although it does not make the conditions
of thermalization of radiation explicit, the cavity picture is useful to demonstrate how a
blackbody can be realized in the laboratory. The second aspect relates to the selection of
certain frequencies, and the subsequent Fourier space mode-counting argument. Unlike the
former, this aspect does not merely serve illustrative purposes, but usually enters the actual
derivation of the Planck spectrum. As such, it appears to students as an important feature of
thermal radiation. We have argued that it is not, and that it actually contradicts a key feature
of blackbody radiation, namely the fact that all wavelengths are emitted.

Our approach, focusing on the local properties of the electromagnetic field, allows us to
derive Planck’s law without using a blackbox, and provides tools for subtler considerations,
such as the near-field regime of thermal radiation. With this perspective, we believe that
students are less likely to miss the point of the blackbody approximation, which expresses an
idealization of the interactions between the electromagnetic field and heated materials—and
not of the materials themselves.
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Appendix A. The Stieltjes–Perron formula

Let a complex function f be defined as

f (z) =
∫

I

dt
ρ(t)

t − z
, (A.1)
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where ρ is a continuous density on the open interval I. We consider the values f ± ≡ f (λ± iε),
for λ ∈ I , and use the well-known identity (the Sokhatsky–Weierstrass theorem)

lim
ε→0

1
t − λ∓ iε

= P
(

1
t − λ

)
± iπδ(t − λ) (A.2)

where P
( 1

t−λ
)

is the Cauchy principal value. It follows that

lim
ε→0

(f + − f −) =
∫

I

dt ρ(t)2iπδ(t − λ) (A.3)

= 2iπρ(λ), (A.4)

which is the Stieltjes–Perron inversion formula.

Appendix B. Evaluation of G(x, y; λ ± iε)

Consider the two integrals

G(x, y; λ± iε) =
∫

d3k

(2π)3

eik·(x−y)

k2 − λ∓ iε
, (B.1)

denoted as G± for simplicity. The angular integration is straightforward and yields

G± = 2π
(2π)3

2
|x − y|

∫ ∞

0
dk

k sin(k|x − y|)
k2 − λ∓ iε

. (B.2)

The remaining integral is evaluated using the residue theorem, considering as integration
contours the standard half-circles γ±, enclosing the poles k± =

√
λ± iε respectively. We

obtain

G± = ± i
4π

sin(k±|x − y|)
|x − y|

. (B.3)

The discontinuity across the cut is then given by

lim
ε→0

(G+ − G−) = i
2π

sin(
√
λ|x − y|)

|x − y|
, (B.4)

from which (16) follows by setting y = x.
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