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We compare and contrast two types of deformations inspired by mixing applications—one from the
mixing of fluids (stretching and folding) and the other from the mixing of granular matter (cutting
and shuffling). The connection between mechanics and dynamical systems is discussed in the
context of the kinematics of deformation, emphasizing the equivalence between stretches and
Lyapunov exponents. The stretching and folding motion exemplified by the baker’s map is shown
to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic
mixing. In contrast, cutting and shuffling does not stretch. When an interval exchange
transformation is used as the basis for cutting and shuffling, we establish that all of the map’s
Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown
to be exponential when there is stretching and folding but linear when there is only cutting and
shuffling. We also discuss how a simple computational approach can discern stretching in discrete

data. © 2011 American Association of Physics Teachers.
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I. INTRODUCTION

The essence of mixing of a fluid with itself can be under-
stood in terms of an array of striations of, say, two different
colors of the same fluid (or two different fluids such as coffee
and cream) undergoing stretching and folding. On top of
stretching and folding we may superimpose diffusion, reac-
tion, and, in special circumstances, breakup processes lead-
ing to droplet formation." This approach is the backbone of
lamellar models of mixing. A fundamental measure of the
quality of mixing is ay, the interfacial area per unit volume
of the striations (lamella or layers). Let S be the interfacial
area between fluid layers within a volume V enclosing the
point x at time ¢. Then the interfacial area per unit volume is
given by2

S
,t)=lim—. 1
av(x ) VE?)V ()

A larger ay corresponds to better mixing.

We can imagine many iterative mixing protocols that gen-
erate large values of ay and create striations of the material
of continually decreasing thickness in time. For fluids, a mul-
titude of clever mixing designs can lead to the thinning of
lamella, many inspired by a direct correspondence between
the kinematics of mixing and chaotic dynamical systems.3
The simplest representation of mixing in terms of stretching
and folding is the Smale horseshoe map, which stretches out
a piece of material and folds it onto itself to form the shape
of a horseshoe. A limiting case of this procedure is a map
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that stretches, cuts, and restacks to generate interfacial area,
the baker’s transformation, named after the process by which
a baker kneads dough.

Granular mixing has been studied as well but less exten-
sively than fluid mixing. In many respects, the ideas applied
to fluids carry over to granular matter.* A key difference
between the two is that granular flows may present surfaces
of discontinuity, such as the interface between a flowing sur-
face layer and the underlying static bed of granular material
in an avalanche.” This new aspect of the flow leads to differ-
ent models for the kinematics. In particular, mixing in granu-
lar flows in rotating containers® (“tumblers”) can be thought
of as “cutting and shufﬂing,”7 a process different from
stretching and folding.8 More on the fascinating behavior of
granular matter can be found in Ref. 9.

Stretching is a fundamental concept in mechanics and is
covered in every continuum mechanics textbook in the con-
text of kinematics (see, for example, the classic volumes of
Truesdell'® and Gurtin“), where it is identified with shear or
extensional strain. Cutting and shuffling, in contrast, has
been explored only recently. To illustrate the fundamental
difference between the mixing mechanisms of stretching and
folding versus cutting and shuffling, we compare two types
of simple idealized mixing protocols: the well-known bak-
er’s map (BM) and cutting and shuffling maps based on in-
terval exchange transformations. Along the way we discuss
the elegant connection between continuum mechanics and
dynamical systems and show how some of the calculations
of the relevant kinematic quantities, such as the deformation
gradient and the principal stretches, are performed. Pertinent

© 2011 American Association of Physics Teachers 359



concepts from the theory of mixing are also reviewed within
this context. We then discuss how to discern and measure
stretching (or lack thereof) in practice.

I1. KINEMATICS OF DEFORMATION

We restrlct our discussion to two spatial dimensions for
51mp11c:1ty % Consider a motion ® from the undeformed (ref-
erence or initial) configuration of the continuum (body) B to
the deformed (current or final) configuration B, at time ¢,
both of which are regions in the Euclidean plane. We denote
sets by capital calligraphic letters. Typically, we concern our-
selves with motions that map the body back into itself, that
is, B,=B,, but this restriction is not important for what fol-
lows. We are interested in discrete-time motions such as a
repetitive mixing protocol. That is, we allow only ¢t=nT,
where T is the duration (period) of the motion and n is a
positive integer. Then, we may write the motion as a map

d:B,— B, (2)

such that after one iteration every X in B, is mapped to an
x=®(X) in B,, where by x=(x,y)" we denote the position
vector in the deformed configuration and X=(X,Y)T repre-
sents the coordinates in the undeformed configuration. The
T superscript denotes the transpose, meaning that (x,y) is a
row vector and (x,y)T is a column vector. Unless otherwise
noted, all vectors not written out in component form are
considered to be column vectors.

We can now define the deformation gradient (or Jacobian
matrix of the map) as

ox Jx
(x,y) X Y
J(X,Y) dy dy
aX aY

F=(Vx)' =

3)

It is typically assumed that the map is invertible and differ-
entiable a sufficient number of times so that F exists and
0<det F<o.'"" In this paper, we relax the differentiability
assumption to consider a wider (and, arguably, more interest-
ing) class of motion.

The polar decomposition theorem™'®'""1* allows us to
write
F=RU, 4)

where U is a symmetric positive definite matrix'* (due to the
assumptlon that det F>0) and R is a proper-orthogonal
matrix.'® That is, we can locally decompose the deformation
into a rotation R and a stretch U. Because the matrix U is
symmetric positive definite, it has an orthonormal basis of
eigenvectors {e;,e,} and strictly positive real eigenvalues
{0}, 0,} satisfying

Uei=0'l-el-. (5)

The eigenvalues o; and eigenvectors e; are called, respec-
tively, the principal stretches and the principal directions be-
cause an infinitesimal line segment of length d€ oriented in
the direction e; has length 0,d¢ after undergoing the motion
(that is, after the map @ is applied). Hence, o;>1 for
stretching and 0 < o0;<<1 for compression along the direction
e,

Problem 1. Consider dx=®(X+dX)—-®(X) and show that
dx=FdX +higher order terms when ||dX|<1. (Hint: use
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Taylor’s theorem for a vector function.) Here, [|dX||
=\dX-dX is the norm induced by the usual Euclidean dot
(inner) product. Then let dX=(d{)e; and show that ||dX||
=d{ and |dx||=0,d¢.

The stretches may depend on the coordinate X in the un-
deformed configuration and also on time (or, in the present
context, the number of times n that the mixing protocol is
repeated). Typically, we are concerned with the largest prin-
cipal stretch d=max{o;,0,}, which is a scalar field
0=06(X;n) that describes the stretching experienced by the
body due to its motion. In practice, it is convenient to calcu-
late the eigenvalues {k,,x,} of the (right) Cauchy-Green
strain tensor C=F "F instead. These are just the squares of
the principal stretches. In this way & can be computed with-
out explicitly finding the polar decomposition of F.

Problem 2. Show that K,:o'i2 using the definition of C, the
polar decomposition theorem, and the properties of eigenval-
ues.

III. DYNAMICAL SYSTEM FRAMEWORK
OF KINEMATICS

Equation (2) also defines a dynamical system, which in the
most general sense is defined as a rule of evolution on a state
space (the body) This connection between the kinematics
of continua and dynamical systems has been successfully
explmted in the study of both fluid m1x1ng and granular
mixing.

There is a direct correspondence between the languages of
dynamical systems and continuum mechanics, the most im-
portant of which, for the present purposes, is the correspon-
dence between stretches and Lyapunov (characteristic) expo-
nents. For a discrete-time map, these exponents are defined
(see, for example, Ref. 17, Sec. 5.3.1) as

AMX,v) = lim— 1n||(V(I)”)Tv|| (6)
where @"=®o---o® (n compositions of the map). The

Lyapunov exponents depend on the position X and on the
direction v (|[v]|=1). The quantity V®”" can be calculated by
the chain rule along a trajectory starting at a given X in 5. If
F=(V®)" happens to be independent of X, we have
(V@®")T=F". Lyapunov exponents are important in the con-
text of the asymptotic stability of infinitesimal perturbations
and, provided certain conditions are satisfied, can be inter-
preted as the growth (or decay) rates of these perturbations
along a trajectory.

A related concept is the finite-time Lyapunov exponents
defined as

1
v(X,v;n) = ;ln”(V(IJ”)TvH. (7)
Note that if (V@®")T=F", we have
1 —
max  ¢(X,v;n) = ~InVp((F") "F"), ®)
v#0,jv=1 n

where p(A) denotes the spectral radius of the matrix A, that
is, its largest eigenvalue in absolute value. As we discussed
at the end of Sec. II, the square root of the largest eigenvalue
of (F")TF" is the largest principal stretch (for the deforma-
tion resulting from applying the map n times). Therefore,
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(2x,3v)7 (o=x<?)

[()] =
m(X) (2x-1iy+HT (=x=1).

(10)

Simply put, this map involves compressing the unit square to
half its height, stretching it to twice its width, cutting verti-
cally the resulting rectangle in half along X=1/2, and stack-
ing the pieces [see Fig. 1 (BM)]—much like how a baker
kneads dough or a taffy pull machine makes candy.26 Other
applications include the Kenics mixer’ and the related par-
titioned pipe mixer (see, for example, Ref. 2, Sec. 8.2). The
baker’s map has even been used to explain the movement of
bubbles in a foam network.”® In fluid mixing, the cut and
restack step cannot be accomplished exactly, but cutting and
restacking is precisely what happens in the extrusion of
multilayer plastics.

Even though the baker’s map constitutes stretching, cut-
ting, and restacking, it possesses (as we will show) the es-
sential property of a stretching and folding motion—
stretching in the continuum mechanics sense (6>1) or,
equivalently, a gositive Lyapunov exponent. The Smale
horseshoe mapz’3 31 is a classical example of stretching and
folding. However, the horseshoe map does not preserve area,
which has significant implications for the types of chaos ex-
hibited by the dynamical system because it allows for the
existence of artractors.’”> We avoid such complications by
idealizing the Smale horseshoe map as the baker’s map.

From Egs. (3) and (10) it follows that

2 0
FBM=(0 1) (x#1), (11)

2

and Fgy, is undefined at the cut X=1/2. The polar decompo-
sition of this matrix is simple: Rgy=I and Ugy=Fgy. The
eigenvalues of Ugy are oy=2 and o0,=1/2. Therefore, the
largest principal stretch is 6=2>1 everywhere after one it-
eration of the protocol (n=1). Clearly, the baker’s map
stretches the underlying material continuum.

Because Fgy is independent of X, iterating the baker’s
map results in

2 0\" [2" 0
(VO T =Fpy = 0 1] = 0 1] (X &Cyw)s
2 2"
(12)

and Fg), is undefined along the cuts, that is, the set of points,

rv=1X in [0,1PX=i2", i=1,2,...,2"—1;

(13)
0=Y=1.

Once again, Rg,,=I and Ug,,=F%,; Consequently, the larg-
est principal stretch of the deformation is

Gpm(X;n) =2" (X & Cpy). (14)

Turning to the Lyapunov exponents, the two directions of
interest are the principal directions e; (the eigenvectors of
Ugy), which are e;=(1,0)T and e,=(0,1) . Therefore, upon
multiplying the vectors e, e, by the matrix in Eq. (12)
and taking the norm of the resulting vector, In[|Fjye; |
=*nln 2. We substitute this expression into Eq. (7) and
obtain the finite-time Lyapunov exponents (along the princi-
pal directions) of the baker’s map,
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vem(X.e1;n)= xIn2 (X & Cgyy), (15)

and they do not exist for X in Cgy;.

Problem 4. Show that the larger finite-time Lyapunov ex-
ponent in Eq. (15) can also be calculated using Egs. (9) and
(14).

The Lyapunov exponents defined in Eq. (6) can be ob-
tained by taking the limit n— <0 in Eq. (15),

Apm(X.e1n)= £In2 (X & Chy). (16)

A subtle but important point™ is that the set of cuts Cam is a
null subset of the domain B as n— o (Ref. 31) because it is
a set of measure zero. Thus, the quantities in Egs. (15) and
(16) exist almost everywhere.

Because A\gp(X,e;)>0, it follows that the baker’s map
gives rise to a chaotic dynamical system; that is, if we were
to track an infinitesimal ball of material points of the con-
tinuum, they will spread exponentially fast from each other
with repeated applications of the map because it possesses a
positive Lyapunov exponent. The simplicity of the baker’s
map and its ability to render many analytical calculations
tractable have made it one of the classic examples of a cha-
otic dynamical system.34 We refer the reader to, for example,
Ref. 35, Sec. 5.1, for a thorough overview, including the
non-area-preserving (dissipative) version of the map.

B. Cutting and shuffling maps

Cutting and shuffling is an operation well known to card
players and mathematicians. One of the simplest dynamical
systems that can be successfully studied analytically is the
interval exchange transformation (see, for example, Ref. 36,
Sec. 14.5). An interval exchange transformation, which we
write as Eg1:Z— 7, replaces a deck of cards with a continu-
ous interval Z of the real line (we take Z=[0, 1] without loss
of generality) and subdivides it into a collection of k disjoint
subintervals S={Z,, ...,Z;}. These subintervals are translated
(“shuffled”) according to a rule given by some permutation
IT of the integers between 1 and k. Finally, the interval 7 is
put back together as 7=7yy)U - -+ UZp. The unusual type
of continuum motions encountered in tumbled granular
flows”*™ that we noted in Sec. I is specific two-
dimensional generalizations, called piecewise isometries,”’38
of these simple maps.

To mix the domain By=[0,1]?, we can apply an interval
exchange transformation in the Y direction and extend it in
the X direction by making each subinterval Z; into a rect-
angle of unit horizontal length. This construction is a special
case of the more general class of rectangle exchange
transformations.39 Consider the simple special case of k=8
equal subintervals shuffled according to the permutation
I1([12345678])=[15263748], numbering the subintervals
from bottom to top so that intervals 1-4 are gray and inter-
vals 5-8 are white. This interval exchange transformation is
equivalent to cutting a deck of eight cards exactly in half and
shuffling them perfectly so that the bottom card from the first
half (gray) is just below the bottom hard from the second
half (white) and so on. As shown in the middle path of
Fig. 1 (CS1), one iteration of this map results in layers of
gray and white that appear identical to those produced by
two iterations of the baker’s map. It is not difficult to see
how one iteration of the same cutting and shuffling map
with, say, k=64 subintervals results in the same number and
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placement of layers of gray and white as n=35 iterations of
the baker’s map. However, repeated application of the map
CS1 does not result in mixing for any choice of k. At n=2
(for k=8), demixing40 occurs: the number of distinct stripes
decreases from 8 to 4. Fortunately, there is a well-developed
theory to guide us in constructing interval exchange transfor-
mations that mix well.

To this end, consider the more general case in which the
intervals are not equal and are not shuffled in such an orderly
fashion. It is well known that for an interval exchange trans-
formation to exhibit interesting behavior (specifically, to
have no periodic orbits and to be ergodic“), it must satisfy
the Keane condition.** This condition requires that the ratio
of the lengths of adjacent intervals |Z;|/|Z;_;| be an irrational
number and that the permutation II be irreducible; that is,
applying II to any of the subsets {1}, {1,2}, {1,2,3} up to

ments of the subset. For example, the permutation
I1([12345])=[31254] is reducible (that is, not irreducible)
because the first three elements are a permutation of only
themselves (neither 1, 2, nor 3 maps to 4 or 5). In contrast,
I1([12345])=[31524] is irreducible because 3 maps to 5. To
satisfy the Keane condition, we consider k=4 subintervals
and suppose that their lengths are chosen so that the first is
|Z,|=7 and each consecutive subinterval has length r times
the length of the previous one: |Z;|=r|Z,_,|. Because the
length of Z=[0,1] must be preserved, p+ry+r’n+r’n=1.
Given r we can solve for 7 from this relation. We take
r= \"T.?) and, numbering from bottom to top, II([1234])
=[2431] to satisfy the Keane condition. In terms of the con-
tinuum mechanics language introduced in Sec. II, the map

{1,2,...,k—1} does not yield a permutation of just the ele- takes the form
|
XY+r+P+P) T 0=Y<p)
XY-nT' (n=Y<[l+r]ln
P (X) = 5 T ) (17)
X,Y+(r-1mng ([L+r]lp=Y<[l+r+riy
(X,Y—(l+r2)7])T (1+r+2p=Y=1).
f
The action of this cutting and shuffling map, constructed Yesa(X,esn) = yeso(X,e0:n) =0 (X ¢ Clgo)s (20)

from an interval exchange transformation, is illustrated by
the right path in Fig. 1 (CS2).

Problem 5. Derive Eq. (17) by considering where the rect-
angles go in Fig. 1 (CS2). [Hint: rectangle 1 moves up by the
height of rectangles 2—4, that is, (r+r>+7°) 7, etc.]

Because we are simply translating the strips in the vertical
direction, calculating the deformation gradient from Eq. (3)
is trivial,

10 1
Feso = 01 (X & Ccsp)s (18)

and it is undefined along the cuts, that is, the set of points,
Cle,={X in [0,12|0=X=1; Y=r'yp, i=0,1,2}. Unlike
for the baker’s map, finding the set of cuts C¢g, for any n for
the cutting and shufﬂin§ map CS2 is not trivial and, in gen-
eral, an open problem.4 Still, it is a countable set, and there-
fore C(g, is a null subset of 5.

Problem 6. Write a computer program that finds the num-
ber and location of the distinct cuts after n applications of
®(g,. What happens if you change r or I1?

For any given trajectory that does not start at some X in
Clsp» it is clear that the deformation gradient after n itera-
tions is the product of identity matrices like the one in
Eq. (18). Hence, F{.q,=I. Therefore, the principal stretches
are o=0,=1, and

GesaXsn) =1 (X & Cigp)- (19)

From Eq. (7) and F{.q,=1I, we can calculate the finite-time
Lyapunov exponents along the principal directions,
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and they do not exist along the cuts. If we take the limit
n—oo in Eq. (20), we arrive at the Lyapunov exponents

[Eq. (6)],

Aesa(X.ep) = Nesa(X,e5) =0 (X ¢ Cig). (21)

Equations (20) and (21) are in stark contrast with Egs. (15)
and (16). In addition, this type of argument can be formal-
ized into a proof showing that all Lyapunov exponents are
zero for the more general class of piecewise isometry maps
on the plane.

Problem 7. Show that the finite-time Lyapunov exponents
in Eq. (20) can also be obtained from Egs. (9) and (19).

Therefore, the map ®cg, (and, by the same logic, the map
) does not give rise to chaotic dynamics. Specifically, an
infinitesimal ball of material points in the continuum does
not spread apart under n iterations of this map (for any
choice of n) unless the ball happens to overlay a cut. Hence,
the distance between any two points in B, can grow only if
they become separated by a cut.

We have assumed that the same specific shuffle (defined
by the given permutation II) is performed once at each itera-
tion of the map. In doing so, we did not consider the possi-
bility that a white piece of material may be moved next to
another white one, meaning that the shuffle is not necessarily
optimal in terms of mixing. Thus, an improvement would be
to allow multiple shuffles to be performed at each step of the
protocol. There is an elegant theory45’4 (in the context of
shuffling decks of cards) that gives an estimate of how many
such shuffles are required for the stack to be “sufficiently
random.”
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V. DEFINING AND QUANTIFYING MIXING

The goal of the protocols we have considered is to mix the
gray with the white in Fig. 1, but what do we mean by
“mix”? If we go by the earlier intuitive definition, that is, to
mix is to generate interfacial area ay, then one thing is clear
about the baker’s map protocol from Sec. IV A: the number
of stripes (of unit length) in the final configuration is 2"+,
Thus, the bulk interfacial area between the gray and white
materials is

ay=2""1—1=2¢"-1. (22)

By expressing ay as an exponential function of n with
growth rate h=In 2= 'y‘é’a",ﬂ we are able to illustrate the well-
known result that chaotic advection, through stretching and
folding, generates ay at an exponential rate.

For the cutting and shuffling maps from Sec. IV B, the
most interfacial area that can be generated in one iteration is
equal to the number of cuts, which is k—1 for k subintervals.
Hence, assuming that the interface at Y=1/2 in the initial
configuration does not coincide with a cut, the upper bound
is

ay=1+(k-1)n. (23)

Equation (23) is only an upper bound because not every cut
gives rise to an intermaterial interface after shuffling. For
example, although on the first iteration of the map CSI1 in
Fig. 1 the seven cuts produce seven interfaces, on the second
iteration only three interfaces remain though we have made
seven fresh cuts. The nature of the upper bound in Eq. (23)
illustrates a general principle about interval exchange trans-
formations and a conjecture about piecewise isometries: the
growth of ay is subexponential (specifically, algebraic) be-
cause of the lack of stretching by the map.

Another way to define mixing is by using ideas from the
ergodic theory of dynamical systems. There, (strong) mixing
is succinctly defined (see, for example, Ref. 17, Sec. 3.7 or
Ref. 48) as

lim Area(®"(A,) N A,) = Area(A,)Area(A,), (24)

n—oo

where A, and A, are any two subsets of 53, and N denotes
the intersection of two sets (that is, the material they have in
common). Put simply, under iteration of the map ®, the set
A, eventually becomes spread out evenly throughout the do-
main 5, so that no matter what other set .4, we choose, the
amount of material in it that came from A4, is the same. In a
more formal definition, Area() is replaced by the appropriate
invariant measure. The maps we consider here are area pre-
serving, and therefore area is the proper measure of “size”
for the definition.

Following the argument in Ref. 17 (Theorem 3.7.2), sup-
pose A, is the gray region of the initial configuration B
(recall Fig. 1), that is, Alz[O,l]X[O,l]. Then, no matter
what set we pick for A,, the number of stripes of each ma-
terial within this volume grows exponentially, eventually re-
sulting in half of each. Therefore, as n—ox,
Area(q)"(Al)OAZ)H%Area(Az). Because Area(A1)=%, it
follows that the left- and right-hand sides in Eq. (24) are
equal, and the baker’s map represents strong mixing.

For the cutting and shuffling maps it should be clear that
this argument breaks down. The second cutting and shuffling
map (CS2) in Fig. 1 illustrates how the gray and white
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undeformed
cofiguration B

(Dn

deformed

cofiguration B, _

Fig. 2. Cumulative movement of material points of the undeformed con-
tinuum B, after n iterations of @, resulting in the deformed configuration
Br:nT'

stripes under this map have nonuniform thickness and a pair
of previously cut gray pieces may be “glued back together”
at a later iteration. Thus, a cutting and shuffling map based
on an interval exchange transformation can only be shown to
be weakly mixing,49

n—-1

1 )
lim -, |Area(®'(A;) N A,) — Area(A,)Area(A,)| =0.

n—oN ;-
(25)

This proof is far too involved to present here. Put simply, Eq.
(25) relaxes the requirement that the same amount of mate-
rial from the subset A, be found in any other subset A,.
Instead, it is only required that this be true on average over
many iterations. Still, weak mixing is a stronger result than
the ergodicity property mentioned previously that an interval
exchange transformation acquires by satisfying the Keane
condition.”

To summarize, according to both the practical measure of
mixing defined in Eq. (1) and the mathematical measures of
mixing defined in Egs. (24) and (25), both of these protocols
mix albeit at different rates and with different “strengths.” In
this respect, the cutting and shuffling map defies conven-
tional wisdom—there is no stretching, all Lyapunov expo-
nents are zero, and the trajectories of material points in the
continuum under this map are not chaotic.”’

VI. INFERRING STRETCHING
FROM DISCRETE DATA

Suppose we performed an experiment with white and gray
putty and recorded the initial and final configurations. We
would like to find out how the putty was stretched due to the
mixing protocols depicted in Fig. 1. In a typical experiment
only a finite number of material points in a continuum can be
tracked. In other words, some collections of M? material
points {X; ;}; ;=1 in By in the undeformed configuration are
identified, and their locations {x; ;}; ;-1 in B, in various
deformed configurations (for example, for different n) are
recorded, as shown schematically in Fig. 2. From these val-
ues the motion and deformation of the continuum can be
reconstructed.
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Fig. 3. Largest numerically-computed principal stretch field 6(X;n) for the protocols depicted in Fig. 1. The background value is 4 in (a) but equals 1 in (b)

and (c).

A particularly simple and effective numerical approach to
achieving this reconstruction is the standard central differ-
ence approximation to the deformation gradient [recall

Eq. (3)],

Xielj —Xi-1j  Xijel —Xij-1
_ X=X .. Y... =Y. .
i+, -1, i,j+1 i,j—1
R )= | 00
Yielj — Yi-1j  Yij+1 ~ Vij-1
Xivrj—Xicy Yij—Yij
—~ T
= (V®") |X=X,-,-' (26)

This approximation is used, for example, in extracting La-
grangian coherent structures (barriers to m1x1ng and trans-
port) from experimental and simulated data, 3 in determining
the type (hyperbolic, elliptic, or parabolic) of periodic points
[that is, X such that ®”(X)=X, p=1,2,...] of mixing
protocols,545 and in calculating the largest principal stretch
in fluid mixing experiments with laminar’®*” or turbulent
velocity fields. Understanding stretch fields is of immense
practical importance in both the industrial and laboratory set-
ting from the microscale to the planetary scale. Their use in
finding barriers to transport and mixing in the ocean was
discussed in Ref. 60.

Tracking the motion of a collection of material points, as
illustrated schematically in Fig. 2, is the objective of this
numerical approach. It may seem that many rearrangements
of the continuum can result in a nontrivial deformation gra-
dient, at least somewhere in the domain. Therefore, it would
appear that stretching occurs under most maps. However,
such intuition can often be wrong.

Figure 3 shows the numerical results for ¢ based on track-
ing the movement of M>=2512 uniformly distributed mate-
rial points under each of the maps in Fig. 1 for the number of
iterations of each map depicted there. Note that the three
narrow vertical lines of high & values for the baker’s map
and similar horizontal lines for the cutting and shuffling
maps are due to the cuts in these protocols causing the
stretch to be infinite there (that is, F” is undefined). The lines
are vertical for the baker’s map because the cuts are vertical.
The middle line in Fig. 3(a) corresponds to the cut that is
made in the first application of the map, and the other two
lines correspond to the cut made in the second application of
the map, which illustrates the set Cgy, defined in Eq. (13).
For the cutting and shuffling maps, the lines are horizontal
because the cuts are horizontal. Specifically, the dark hori-
zontal lines in Fig. 3(b) depict the set of cuts
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Cisi={X in [0,1P|0=X=1; Y=i/8, i=1,...,7}, while
those in Fig. 3(c) depict the set of cuts C¢g, (n=2) noted
after Eq. (18).

The apparent thickness of these lines is due to the coarse-
grained view of the deformation that we obtain from the
numerical data. Taking more points (larger M) makes these
lines arbitrarily thin. (Their thickness is =2/M, that is, twice
the spacing between points because we used a central differ-
ence approximation to F.) If we had applied the map more
times (larger n) and/or had fewer material points, then the
resulting thicker cuts would completely obscure the picture.

In Fig. 3 the expected results are found. We applied the
baker’s map twice [recall Fig. 1 (BM)] so that n=2. From
Eq. (14), the largest principal stretch is 6=2%2=4. We can
also calculate ¢ from the numerical data by taking the square

root of the largest eigenvalue of [Fy(X;2)] Fpu(X;2) (re-

call the discussion at the end of Sec. II), where F is defined
in Eq. (26). In complete agreement with the theoretical re-
sult, the numerical calculation produces a ‘“background”
value (that is, the value of & away from the cuts we have
discussed) of 4, as shown in Fig. 3(a). This result can also be
anticipated by realizing that the baker’s map stretches the
continuum in the X direction by a factor of 2. Applying the
map twice gives a stretch ratio of 4. Similarly, for both of the
cutting and shuffling maps, the largest principal stretch is
equal to 1 for all n from Eq. (19), that is, the maps do not
stretch. The numerical calculation shown in Figs. 3(b) and
3(c) confirms that =1. In both cases, the background value
in the plots is 1, and & is different from the background value
only along the cuts, where it is infinite.

VII. CONCLUSION

The mixing of continua can be accomplished by a great
variety of maps of different complexities. In mechanics, the
central theme is stretching. Stretching leads to a positive
Lyapunov exponent and chaos when the problem is trans-
lated into the language of dynamical systems. For mixing,
the central theme is generation of interfacial area per unit
volume ay. Stretching and folding (equivalently, chaotic dy-
namics) is an efficient way to do this.

Surprisingly, cutting and shuffling can also “rearrange”
material points in a continuum quite well. The cutting and
shufﬂlng maps, which would be con51dered pathological in

“classical” continuum mechanics,'®"" do not stretch, possess
no positive Lyapunov exponents, and exhibit no chaotic be-
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havior in the usual sense, yet they mix. Even though interfa-
cial area is produced at an asymptotically slower rate than for
a chaotic motion that stretches, for short times it appears
possible for cutting and shuffling to dominate stretching and
folding, depending on the number of cuts k in Eq. (23) and
the growth rate 7 in Eq. (22). Although we may be misled to
conclude that a cutting and shuffling map stretches the un-
derlying continuum based on the complicated pattern of non-
uniform striations produced by it, analytical and sufficiently
refined numerical calculations show otherwise.

Recent work”*™ takes the idea of cutting and shuffling
even further, arguing that it provides the “skeleton” of certain
regimes of granular flow in tumblers. In this paper, we illus-
trated how cutting and shuffling can lead to mixing without
chaos. In more complicated maps, cutting and shuffling can
also lead to complex d;/namics without chaos in any usual
sense of the word.”*> Thus, cutting and shuffling maps
and their generalizations are more than just a mathematical
exercise and have the potential to accurately describe the
underlying framework of mixing in physical systems.
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