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The statistical analysis of the eigenvalues of quantum systems has become an important tool in
understanding the connections between classical and quantum physics. The statistical properties of
the eigenvalues of a quantum system whose classical counterpart is integrable match those of
random numbers. The eigenvalues of a chaotic classical system have statistical properties like those
of the eigenvalues of random Hermitian matrices. The statistical properties of random numbers and
eigenvalues of random Hermitian matrices are examined and the connection between these
properties and the statistics of eigenvalues of quantum systems is illustrated, using the quantum
standard map as an example. The relevance of these ideas to some problems in the theory of prime
numbers is explored. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Classical systems can exhibit qualitatively different types
of motion: chaotic motion, which exhibits sensitive depen-
dence on initial conditions, and regular motion which does
not. In quantum mechanics, sensitive dependence on initial
conditions is not possible due to the Heisenberg uncertainty
principle which prevents a quantum particle from having
well-defined initial conditions. In this sense, there is no
chaos in quantum mechanics. However, in the last 30 years
much research has gone into investigating whether or not
there are any qualitative differences between quantum sys-
tems whose classical counterparts are chaotic and those
whose classical counterparts are regular. One of the most
important discoveries in this area of quantum chaos has to do
with the statistics of eigenvalue sequences.

In the 1950s Eugene Wigner recognized the importance of
eigenvalue statistics when he studied the distribution of spac-
ings between energy levels of highly excited nuclei.' He
found that the nuclear energy levels were statistically similar
to the eigenvalues of a random Hermitian matrix. It is not
surprising that the nuclear energy levels have properties
similar to the eigenvalues of a Hermitian matrix, because the
Hamiltonian is represented by a Hermitian matrix. What is
surprising is that their behavior should mimic that of a ran-
dom matrix. Much experimental data on nuclear energy lev-
els has been shown to fit the predictions of random matrix
theory.2

It would be many years before Wigner’s pioneering work
on eigenvalue statistics found application in the field of
quantum chaos. In 1977 Berry and Tabor® proposed that the
sequence of energy levels for a generic quantum system with
integrable classical counterpart should have statistical prop-
erties like those of random numbers. In 1984 Bohigas, Gian-
noni, and Schmit® provided evidence that the quantum en-
ergy level sequences of systems with chaotic classical
counterparts have statistical properties that fit the predictions
of random matrix theory. Much experimental and numerical
evidence has supported these conjectures, and some authors
have taken the statistical properties of the spectra as the defi-
nition of quantum chaos although such a definition is not
universally accepted.

The statistics of random sequences has also found appli-
cations in areas outside of physics. In number theory, for
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example, the sequence of prime numbers is statistically simi-
lar to a sequence of random numbers,” and the imaginary
parts of the nontrivial zeros of the Riemann zeta function
(numbers that are intimately tied to the detailed distribution
of prime numbers) have statistical properties that fit the pre-
dictions of random matrix theory.

The goal of this paper is to illustrate how the statistical
properties of the eigenvalues of a quantum system change as
its classical counterpart makes a transition from regular to
chaotic motion. I focus on the nearest neighbor spacing dis-
tribution, which is one of the simplest tools for studying
eigenvalue statistics. Section II describes the nearest neigh-
bor spacing distributions for random numbers and random
matrix eigenvalues and illustrates the validity of these results
with numerical computations. Section III illustrates how the
nearest neighbor spacing distribution of a quantum system
changes as its classical counterpart becomes chaotic. Section
IV explores the connections between these ideas and the
theory of prime numbers.

II. RANDOM NUMBERS AND MATRICES

The idea of the nearest neighbor spacing distribution is to
analyze how the spacings between consecutive numbers in a
number sequence fluctuate about the average spacing. This
analysis requires that there be a well-defined average spac-
ing. But the average spacing (averaged over many consecu-
tive spacings, but not over the entire sequence) may not be
uniform throughout the sequence. If this local average
changes significantly on the scale of a single spacing, then
there is no hope of separating the large-scale variation in the
spacings from the local fluctuations. However, if the local
average varies only on scales that are large compared to a
single spacing, then the effects of this variation can be sepa-
rated from the local fluctuations using a process called un-
folding.

Let E represent a number in the sequence. The average
density of the numbers in the sequence (the reciprocal of the
average spacing) as a function of E is represented by p(E).
The sequence can be unfolded using the average level stair-
case function,
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which tells us how many members of our sequence are less
than E on average. The unfolded sequence is given by

€= ﬁ(El)7 (2)
where the index i labels the numbers in the sequence. The
unfolded sequence (e, e,,..., ey) will have a uniform aver-

age spacing equal to one, although individual spacings will
fluctuate about this average. The nearest neighbor spacing
distribution is constructed by computing the differences be-
tween consecutive numbers e;,;—e;, organizing these spac-
ings into bins, and constructing a histogram to obtain a pic-
ture of how the individual spacings fluctuate about the
average.

A. Random numbers

A standard random number generator7 yields a number in
the interval [0, 1). The probability distribution for an ideal
random number generator is uniform on this interval (all
values on the interval are equally likely to be produced).
Random numbers are uncorrelated, which means the prob-
ability of generating a particular value with a random num-
ber generator is independent of the values that have been
generated previously. Therefore, a list of numbers produced
by a random number generator has uniform average density
and requires no unfolding. To calculate the spacings we need
only sort the numbers, take the difference between consecu-
tive numbers, and then scale these differences so that the
mean spacing is one.

B. Random matrices

Random matrices are not simply matrices whose elements
are random numbers. The matrix elements must satisfy the
symmetries of the matrix. I will discuss only random Her-
mitian matrices, because Hermitian matrices represent physi-
cal observables in quantum mechanics. The symmetry of
these matrices puts severe restrictions on the matrix ele-

ments, because the elements of a Hermitian matrix satisfy

H,,=H,, . If the matrix H represents a Hamiltonian of a
physical system, it may have additional symmetries related
to the symmetries of the system. In particular, if a system
(without spin-1/2 interactions) is symmetric under time-
reversal, then its Hamiltonian can always be represented as a
real symmetric matrix.® If the system is not symmetric under
time-reversal, the Hamiltonian will be a complex Hermitian
matrix.

These symmetries play an important role in determining
the probability distribution for a random matrix.”'" The
probability distribution must be invariant under a change of

basis. Thus P(H)=P(H'), where H' is obtained from H by a

change of basis. Any change of basis must preserve the sym-
metry of the matrix. The symmetry of real symmetric matri-

ces is preserved by orthogonal transformations (I:I '=OHO",

where O is an orthogonal matrix), and the symmetry of com-
plex Hermitian matrices is preserved by unitary transforma-
tions (I:I '=UAU" with U a unitary matrix). Thus we must
consider two separate ensembles of random matrices: real
symmetric random matrices whose probability distribution is
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invariant under orthogonal transformations (the Gaussian or-
thogonal ensemble), and complex Hermitian random matri-
ces whose probability distribution is invariant under unitary
transformations (the Gaussian unitary ensemble). In both

cases, P(I:I) depends only on traces of powers of H to ensure

that P(I:I) is invariant under the appropriate transformation.
If we also require that the matrix elements be statistically
independent (to the extent allowed by the symmetry of the
matrix), then the distribution is further restricted and

P(H)=C exp(—aTr H), (3)

where C and a are constants and Tr H? is the trace of the
square of the matrix. For a 2 X2 real symmetric matrix

P(H) = C exp(— a(h?, + h3, + 2h3,)), (4)

which shows that each matrix element is Gaussian random
and the variance of the off-diagonal element is one-half that
of the diagonal elements. To construct an N XN Gaussian
orthogonal ensemble matrix, we choose the diagonal ele-
ments of the matrix H,, from a Gaussian distribution with
mean zero and variance one. The elements above the diago-
nal (H,,,, with m <n) should be Gaussian-random with mean
zero and variance one half. The elements below the diagonal
are generated from the symmetry of the matrix H,,=H,,,.
For a Gaussian unitary ensemble matrix the diagonal ele-
ments are also Gaussian-random with mean zero and vari-
ance one. The elements above the diagonal have independent
real and imaginary parts that are each Gaussian random with
mean zero and variance one half. The elements below the
diagonal are obtained from H,,=H,, .

Once the random matrix has been created, its eigenvalues
can be obtained numerically. Unlike a sequence of random
numbers, the eigenvalues of a random matrix are not distrib-
uted uniformly. Wigner derived the average density of
eigenvalues,” now known as the Wigner semicircle law

1 —— —

~ —V2N-E*, |E| < 2N

pE)=\7 (5)
0, |E| > V2N,

which holds for both Gaussian orthogonal and Gaussian uni-
tary ensemble matrices in the limit N — . Figure 1(a) shows
the agreement between the calculated density of the eigen-
values for a 3000X 3000 Gaussian orthogonal ensemble
matrix and the Wigner semicircle law. The Wigner semi-
circle law can be integrated to obtain the average level
staircase function

I N va=1 o £

7(E) 27T<E\12N E“+2N sin <\5\/) + ’JTN,), (6)
which can be used to unfold the eigenvalues using Eq. (2).
The unfolded eigenvalues will then be distributed uniformly,
on average, with mean spacing one. After the eigenvalues
have been unfolded. they can be sorted and the differences
between consecutive eigenvalues can be computed.

C. Level spacing distributions

Random numbers are uncorrelated and this property deter-
mines the distribution of spacings between nearest neighbors
in an ordered random number sequence. % Given a number E
in the sequence, the probability P(s)ds that the next number
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Fig. 1. Statistical distributions of random numbers and eigenvalues of ran-
dom matrices. The histogram in (a) shows the distribution of eigenvalues for
an N XN real symmetric random matrix with N=3000. The solid curve is
the Wigner semicircle law, Eq. (5). The histogram in (b) shows the nearest
neighbor spacing distribution for 10 000 random numbers. The solid curve
shows the Poisson distribution, Eq. (8). The histogram in (c) shows the
nearest neighbor spacing distribution for the unfolded eigenvalues of a ran-
dom real symmetric matrix (N=3000) and the solid curve shows the Wigner
Gaussian orthogonal ensemble distribution, Eq. (9). The histogram in (d)
shows the nearest neighbor spacing distribution for the unfolded eigenvalues
of a random complex Hermitian matrix (N=3000) and the solid curve shows
the Wigner Gaussian unitary ensemble distribution, Eq. (10).

in the sequence lies between E+s and E+s+ds is propor-
tional to the probability that there is no level between E and
E+s. Thus

P(s)ds:a(l - f P(s’)ds’), )

0

where a is a constant. The integral equation (7) can be solved
to show that the nearest neighbor spacing distribution for
random numbers is the Poisson distribution

P(s)=¢"", (8)

where P(s) has been normalized so that the mean spacing is
one. Figure 1(b) shows the agreement between the computed
nearest neighbor spacing distribution for 10000 random
numbers and the Poisson distribution. Note that the Poisson
distribution is peaked at s=0, indicating that small spacings
are very likely in a sequence of random numbers. This ten-
dency of random numbers to clump together is called level
clustering.

The theoretical spacing distributions for the unfolded ei-
genvalues of random matrices are not so simple. The limiting
spacing distributions for an N X N random matrix as N—
involve complicated Taylor series expansions.13 Wigner de-
rived the spacin; distributions for ensembles of 2 X2 ran-
dom matrices'"'* and these distributions differ only slightly
from the limiting distributions for N — . For most purposes
it is sufficient to use the Wigner distributions to describe the
nearest neighbor spacing distribution for eigenvalues of ran-
dom Hermitian matrices.

The Wigner distribution for unfolded eigenvalues of a
Gaussian orthogonal ensemble matrix is
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T K
P(s) 2s exp( 4s ) 9)
Figure 1(c) shows the agreement between the computed
nearest neighbor spacing distribution for the unfolded eigen-
values of a 3000 X 3000 Gaussian orthogonal ensemble ma-
trix and the corresponding Wigner distribution. Note that
the Wigner distribution for the Gaussian orthogonal en-
semble decreases linearly to zero as s— 0. For this reason
the eigenvalues of a Gaussian orthogonal ensemble matrix
are said to exhibit linear level repulsion. The eigenvalues of
a Gaussian orthogonal ensemble matrix are correlated and
tend to repel each other, leading to the absence of small
spacings in the nearest neighbor spacing distribution.

For Gaussian unitary ensemble matrices the Wigner distri-
bution is

P(s) = %sz exp(— %sz), (10)

where again Eq. (10) is exact for N=2 and close for N— .
Figure 1(d) shows the agreement between the computed
nearest neighbor spacing distribution for the unfolded eigen-
values of a 3000 X 3000 Gaussian unitary ensemble matrix
and the corresponding Wigner distribution. In this case the
Wigner distribution falls off quadratically as s —0, so the
eigenvalues of such a matrix are said to exhibit quadratic
level repulsion.

III. QUANTUM CHAOS

As mentioned in Sec. I, the eigenvalues of quantum sys-
tems whose classical counterparts are regular have Poisson
level spacing distributions, while the eigenvalues of quantum
systems with chaotic classical counterparts have random ma-
trix level spacing distributions. A classical system that under-
goes a transition from regular motion to chaos as some pa-
rameter is varied should have a quantum counterpart whose
eigenvalues undergo a transition from Poisson to random
matrix statistics for the same variation of the parameter.
These transitions are illustrated in the following.

A. Classical standard map

Hamiltonian (conservative) systems with one degree of
freedom cannot be chaotic. The simplest systems that can
exhibit classical chaos are one-dimensional potentials subject
to a periodic driving force. Often the dynamics of a periodic
system can be reduced to a mapping function that maps the
location of a trajectory in phase space at time t, to its loca-
tion at time fy+7, where T is the period of the driving field.
For a rigid rotor subject to periodic delta-function kicks, the
mapping function, known as the standard map,15 is

mod 1, (11)

!

k.
, q+p—-—sin(2mq)
k
P p— — sin(2mq)
2w

where ¢ and p are dimensionless phase space variables and k
is a dimensionless parameter that controls the nonlinearity of
the map. Both ¢ and p are periodic coordinates with period
one, that is, g is equivalent to g+1. Therefore the phase
space for this map is a 2-torus with area one in dimensionless
units.
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Fig. 2. Strobe plots for the classical standard map with (a) k=0.3, (b) k
=1.5, (c) k=3.9, and (d) k=7. At low values of k the classical trajectories are
almost all regular. As k is increased a larger portion of the phase space
becomes chaotic. At k=7 the entire phase space is chaotic.

If we start with some initial location in phase space and
repeatedly iterate the mapping function, we produce a set of
points called a trajectory. This set of points shows the loca-
tion of the classical system in phase space after each kick
and provides a picture of the motion similar to what one
might see when watching a moving object illuminated by a
strobe light. A plot composed of trajectories for a variety of
initial conditions scattered throughout the phase space is
therefore called a strobe plot. A strobe plot provides an over-
view of the dynamics of the map in all parts of the phase
space. Figure 2 shows strobe plots for the standard map with
various values of the nonlinearity parameter k. Continuous
curves and ordered sequences of points such as those seen in
Fig. 2(a) indicate regions of regular motion. A random scatter
of points [such as that seen throughout Fig. 2(d)] indicates a
region of chaotic motion. It is clear from Figs. 2(a)-2(d) that
the standard map makes a transition from regular motion to
chaos as k is increased from 0.3 to 7. A more detailed intro-
duction to the dynamics of the standard map can be found in
Ref. 16.

B. Quantum standard map

As mentioned, the standard map represents the dynamics
of a system that is subject to a periodic driving force. In such
a system the Hamiltonian depends explicitly on time and
energy is not conserved because the Hamiltonian is not in-
variant under infinitesimal time translations t— ¢+ &t. There-
fore, to analyze the quantum dynamics of the standard map
we cannot take the usual approach of finding energy eigen-
values and eigenvectors. However, the Hamiltonian of a pe-
riodically driven system is invariant under the discrete time
translation r—1¢+7, where T is the period of the driving
force. Because of this symmetry, it is possible to construct an
operator whose eigenvalues and eigenvectors will character-
ize the dynamics of the system in much the same way that
the eigenvalues and eigenvectors of the Hamiltonian charac-
terize the dynamics of energy-conserving systems. The op-
erator that serves this purpose is the Floquet operator,

U(t,t+ T)=U, which is the unitary time evolution operator
that transforms the wavefunction at time ¢ into the wavefunc-
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tion at time ¢+ (so U (1) =(t+T)). The Floquet operator is
the quantum counterpart of the classical mapping function.

The eigenvalues of the Floquet operator have the form A
=exp(—i¢) because the Floquet operator is unitary and must
have eigenvalues of unit modulus. The quantity ¢ is called a
quasienergy (or eigenphase) and is only defined modulo 27
because exp(—i¢)=exp(—i(¢p+2mn)) for any integer n. The
discussion in Sec. II B referred to the eigenvalues of Hermit-
ian matrices, in contrast to our present discussion of eigen-
phases associated with unitary matrices. An ensemble of ran-
dom unitary matrices is known as a circular ensemble. As
with random Hermitian matrices, there are different classifi-
cations of random unitary matrices based on symmetry: the
circular orthogonal ensemble and the circular unitary en-
semble. The nearest neighbor spacing distribution for the
eigenphases of circular orthogonal and circular unitary en-
semble matrices follow the same distributions as the eigen-
values of Gaussian orthogonal and Gaussian unitary en-
semble matrices, respectively.” Because the standard map is
time-reversal invariant, we expect the nearest neighbor spac-
ing distribution of the quasienergies for the quantum stan-
dard map to undergo a transition from Poisson statistics at
low values of k to circular/Gaussian orthogonal ensemble
statistics at high values of k.

To find the quasienergies for the quantized standard map

we must first construct the Floquet operator U. The construc-
tion of a unitary evolution operator from a classical map is
subtle; the result for the the standard map is'®

(UN)j'j=<CIj'|0N|‘Ij>

L i kY (@)]
\Wexp N(] J)+ o S\ I | (12)
where |qj) is a discrete position eigenstate with eigenvalue
g;=j/N and j=0,1,... ,N-1. The number N of discrete po-
sition eigenstates determines the size of the Floquet matrix.
Because the phase space is a 2-torus, the wavefunctions must
satisfy periodic boundary conditions: ¢{g+j)=i¢(qg) and

Hp+k)=i(p), where j and k are integers. The effective
value of Planck’s constant is 4=1/N, because the number of
quantum states is equal to the area of the phase space divided
by h, so the classical limit #— 0 corresponds to N — '8 To
calculate the quasienergies we choose a value for N, con-
struct the Floquet matrix according to Eq. (12), and numeri-
cally determine the eigenvalues A, where a=1,2,...,N. The
quasienergies are given by ¢,=—Im[In \,]. The quasiener-
gies (modulo 27r) will be distributed roughly uniformly
over the interval 0 to 2.

Because this system is symmetric under the parity trans-
formation, the eigenstates of the Floquet operator must sat-
isty #,(-q;)=+4,(q;), with the plus sign for even eigen-
states and the minus sign for odd eigenstates. Recall that the
wavefunction must satisfy periodic boundary conditions, so
W—q;)=(1-q;)=yqy_;) for any integer j. Thus the Flo-
quet eigenstates will satisfy ¢(qy_;) == (q;). Because parity
is a good quantum number for this system, the quasienergies
obtained by diagonalizing the Floquet matrix form a mixture
of two independent sequences. The mixing of two indepen-
dent Gaussian orthogonal ensemble sequences causes an in-
crease in the number of small spacings and thus leads to a
nearest neighbor spacing distribution that does not fit Eq.
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Fig. 3. Nearest neighbor spacing distributions for states of like parity for the
quantum standard map with (a) k=0.3, (b) k=1.5, (c) k=3.9, and (d) k=7.
Each distribution represents the spacings of 2000 eigenvalues. In each plot
the dashed curve shows the Poisson distribution, Eq. (8), and the solid curve
shows the Wigner Gaussian orthogonal ensemble distribution, Eq. (9).

(9).19 To clearly illustrate the transition from Poisson statis-
tics to random matrix statistics, it is important that only spac-
ings between eigenvalues of states with the same parity be
used. Therefore we must separate the states of even and odd
parity before determining the nearest neighbor spacings. If N
is even, the sum =Np|(g;)+¥lgy_;)|* will be zero for odd
states but greater than two for even states. This criterion can
be used to identify the even and odd eigenstates. The spac-
ings between quasienergies of like parity can then be calcu-
lated, and then both sets of spacings can be recombined to
produce a nearest neighbor spacing distribution histogram.

Figure 3 shows the nearest neighbor spacing distribution
for quasienergies of like parity at various values of k. There
is a clear transition from Poisson statistics at k=0.3 to Gauss-
ian orthogonal ensemble statistics at k=7. Note that at k=0
the nearest neighbor spacing distribution is not Poissonion,
but has an excess of small spacings. This deviation from
Poisson statistics is typical of one-dimensional systems with-
out time-dependent driving forces and arises because of
number-theoretical degeneracies, which are eliminated when
k is increased to 0.3. A comparison between Figs. 2 and 3
shows that the transition from Poisson statistics to random
matrix statistics in the eigenvalues of the quantum system
parallels the transition from regular motion to chaos in the
classical system.

IV. NUMBER THEORY

The statistical properties of number sequences have helped
to shed light on important problems in number theory, par-
ticularly in the study of prime numbers. The primes (2, 3, 5,
7, 11, ...) are thought to be distributed randomly among the
integers, and their nearest neighbor spacing distribution pro-
vides evidence that prime numbers are statistically random.
Before the nearest neighbor spacing distribution for primes
can be calculated, the sequence of primes must first be un-
folded. The density of primes near the nth prime is p(p,)
=1/In(p,), as originally observed by Gauss.”’ Figure 4(a)
shows the agreement between the numerically computed
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Fig. 4. Number theoretical distributions. In (a) the number density of the
primes is compared to the prediction of Gauss (solid line). In (b) the nearest
neighbor spacing distribution for primes is compared to the Poisson distri-
bution of Eq. (8) (solid line). In (c) the number density of zeta zeros is
compared to the prediction of Eq. (16) (solid line). In (d) the nearest neigh-
bor spacing distribution for zeta zeros is compared to the Wigner Gaussian
unitary ensemble distribution of Eq. (10) (solid line). The values of the zeta
zeros were computed by Andrew Odlyzko and are available from Ref. 30.

density of the first 10 000 primes and Gauss’ formula. By
integrating this density we find that the average level stair-
case function for the primes is

7(p,) = Li(p,), (13)
where
) *odt
Li(x) = fo m (14)

is the log integral function. Thus Li(x) gives the approximate
number of primes less than x. The function 7(x) that gives
the exact number of primes less than x is called the prime
counting function. The fact that 7r(x) tends asymptotically to
Li(x) is the essence of the famous prime number theorem
proved independently by Hadamard and de la Vallée Poussin
in 1896.”'

The unfolded primes are given by e,=Li(p,,). If the primes
are statistically random, then the nearest neighbor spacing
distribution for the unfolded primes should fit the Poisson
distribution. If the nearest neighbor spacing distribution is
computed for the first 10 000 primes, the result looks some-
what Poissonian but does not match the Poisson distribution
very well. In particular, there is a shortage of small spacings.
However, the nearest neighbor spacing distribution for larger
primes does match the Poisson distribution. Figure 4(b)
shows the nearest neighbor spacing distribution for primes p,,
where n ranges from 10'? to 10'>+10*. Note that the density
p(p) changes very little over this range of primes, so it is not
necessary to go through the unfolding procedure before com-
puting the nearest neighbor spacing distribution. Instead, the
spacings can be computed using the actual primes and then
scaled so that the average spacing is one. The spacing distri-
bution for these large primes fits the Poisson distribution
very well. The general trend is that larger primes follow
Poisson statistics more closely, indicating that the nearest
neighbor spacing distribution for the first N primes will ap-
proach the Poisson distribution as N—cc. The fact that the
prime spacing distribution asymptotically approaches the
Poisson distribution indicates that primes are randomly dis-
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tributed (aside from the obvious fact that they are integers,
and all but one are odd). Furthermore, it indicates that if the
prime numbers are eigenvalues of some quantum system,
then the classical counterpart of that system should be inte-
grable. This idea has led to an attempt to formulate a one-
dimensional potential whose quantum eigenvalues are (ap-
proximately) the prime numbers.

Although the prime counting function (x) is approxi-
mated by Li(x), the detailed behavior of 7(x) depends on a
set of quantities known as the nontrivial zeros of the Rie-
mann zeta function. The Riemann zeta function™ for integer
and real z>1 is

(15)

n=1 1

where the product on the right-hand side is over all primes p.
The equivalence of the sum and product in Eq. (15) was
shown by Euler in 1737.%* Riemann extended the definition
of the zeta function to the complex plane (z# 1) using ana-
lytic continuation.” The Riemann zeta function has trivial
zeros at the negative even integers. The rest of the zeros of
the Riemann zeta function are nontrivial and lie in a strip of
the complex plane bounded by the lines Re z=0 and Rez
=1. Riemann derived an explicit formula for 7(x) that in-
volves a sum over the nontrivial zeros. He also stated a con-
jecture that all of the nontrivial zeros have Re z=1/2. This
relation is the famous Riemann hypothesis, which is one of
the greatest unsolved problems in mathematics and the sub-
ject of several recent popular books. 2627

One approach to proving the Riemann hypothesis exploits
a possible connection between the Riemann hypothesis and
quantum mechanics. The idea is to prove that all nontrivial
zeros of the Riemann zeta function are of the form 1/2+i7,
where vy is a real number (hereafter I will refer to the vy
values as zeta zeros). The Hilbert-Pélya conjecture is that the
zeta zeros are eigenvalues of some Hermitian operator and
are thus real, so if this conjecture is true so is the Riemann
hypothesis. In quantum mechanics Hermitian operators rep-
resent physical observables. Thus perhaps the zeta zeros are
the energy eigenvalues of a Hamiltonian. What kind of sys-
tem would have the zeta zeros as its eigenvalues? The an-
swer comes from analyzing the nearest neighbor spacing dis-
tribution of the zeta zeros.

The density of the zeta zeros is given by6

ply,) = L ln< ) (16)
2 2

where 7, is the nth positive zeta zero. Figure 4(c) shows the
agreement between the computed density of the first 100 000
zeta zeros and the prediction of Eq. (16). The density can be
integrated to find the average level staircase function, which
provides a formula for the unfolded zeta zeros:

1 Yo

e, 277%’(1n(27r> 1). (17)
The nearest neighbor spacing distribution for the first
100 000 unfolded zeta zeros is close to the Gaussian unltary
ensemble distribution, Eq. (10), but is not a perfect fit® As
with the primes, though, the fit becomes better for larger zeta
zeros. Figure 4(d) shows the nearest neighbor spacing distri-
bution for the zeta zeros with n ranging from 10?* to 10%
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+10* [with no unfolding because p(7,) is essentially constant
in this range]. The fit to the Gaussian unitary ensemble dis-
tribution is very good. This fit implies that if the zeta zeros
are energy eigenvalues of some quantum system, the system
should be chaotic. Moreover, it tells us that the system is not
time-reversal invariant. These conditions fall well short of
actually producing a system whose eigenvalues are the zeta
zeros (and thus proving the Riemann hypothesis), but indi-
cate where to look for such a system.

V. SUMMARY

The eigenvalues of a quantum system whose classical
counterpart is integrable are uncorrelated, exhibit level clus-
tering, and have statistical properties similar to those of ran-
dom numbers. In contrast, the eigenvalues of a quantum sys-
tem whose whose classical counterpart is chaotic are strongly
correlated, exhibit level repulsion, and are statistically simi-
lar to the eigenvalues of random matrices. For the standard
map, which makes a transition from classical integrability to
chaos as a parameter is varied, the eigenvalues show a cor-
responding transition from random number statistics to ran-
dom matrix statistics. This difference of the eigenvalue sta-
tistics is one of the most important features that distinguishes
a quantum system whose classical counterpart is chaotic
from a quantum system whose classical counterpart is regu-
lar. The statistical properties of random numbers and random
matrix eigenvalues are also of interest in connection with the
distribution of prime numbers and the zeros of the Riemann
zeta function, which indicates intriguing connections be-
tween quantum mechanics and number theory.

Readers who wish to further explore this material are en-
couraged to do the computations discussed in this paper. A
MATHEMATICA notebook, which includes some additional
computaglons not discussed in this paper, is available for that
purpose. Much more detail about these topics can be found
in books on random matrix theory, quantum chaos, 1029 and
the Riemann zeta function.”
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