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A calculation of perihelion precession is presented that utilizes a phase-plane analysis of the general
relativistic equations of motion. The equations of motion are reviewed in addition to the phase-plane
analysis required for the calculation. ‘‘Exact’’ phase planes for orbital dynamics in the
Schwarzschild geometry are discussed, and bifurcations are identified as a dimensionless parameter
involving the angular momentum is varied. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

The perihelion precession of planetary orbits has provi
one of the earliest experimental tests of Einstein’s gen
theory of relativity. In the standard textbook presentation
this calculation1 there are essentially two approaches take
calculate its value from the nonlinear equations of motio

~a! approximate an elliptic integral,
~b! find a perturbative solution to the general relativis

equations.

Although ~a! and~b! are the most common methods appe
ing in the literature, other approximation methods do ex
Wald,1 for instance, considers small oscillations about
elliptical orbit; Misner, Thorne, and Wheeler~MTW!1 con-
sider nearly circular orbits and then later use the PPN~‘‘Pa-
rametrized Post-Newtonian’’! formalism. The purpose of thi
paper is to illustrate how the perihelion calculation may
performed and to present an analysis of the Schwarzsc
orbital dynamics based on a standard technique of nonli
analysis: the phase-plane approach~see also Refs. 2 and 3!.
Not only is the calculation simpler to perform in the mode
setting of phase-plane analysis, but there is more physic
be learned with less algebra compared with the standard
cedures.

The contents of this paper are organized as follows
Sec. II the general relativistic equations of motion are
rived. The goal here is to not only make the presentation
self-contained as possible, but to ‘‘tailor’’ the derivation t
ward a discussion emphasizing the phase-plane analysis
for easy comparison with the corresponding Newtonian
culation. In Sec. III, the phase-plane analysis is develo
and in Sec. IV applied to obtain the well-known value
perihelion precession. In Sec. V, a discussion of
Schwarzschild orbital dynamics is given based upon an ‘
act’’ general relativistic phase plane. The standard results
discussed, but also an alternative viewpoint for analyzing
orbital dynamics is presented based upon the separ
structure of the phase plane. In this approach, the cri
relationship that holds between energy and momentum a
unstable orbital radius~i.e., the separatrix! summarizes the
range of physically possible orbits, and demonstrate
saddle-center bifurcation as a dimensionless paramete
volving the angular momentum is varied.

In Sec. VI, a phase-plane analysis of the dynamical inv
ance between the coordinate and proper time refere
frames is given. Although the dynamical structure~i.e., the
effective potential! is invariant between the two referen
78 Am. J. Phys.67 ~1!, January 1999
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frames, the phase diagrams in each case are not iden
This is due to the existence of an additional phase-pl
fixed point that appears in the coordinate reference fram
the event horizon. This fixed point is obviously coordina
dependent, but must exist to explain the apparent ‘‘slow
down’’ of objects ~and redshift of signals! approaching the
horizon as seen by an observer in the coordinate refere
frame.

For comparison with the relativistic case, the correspo
ing Newtonian phase-plane results are discussed in an
pendix. Not only does this analysis complement the dyna
ics considered in Sec. VI, but it is shown that an analysis
Newtonian orbits using time as an independent variable
just as instructive and no more complicated in principle th
using the equatorial angle as the independent variable~how-
ever, the opposite is true when using the standard method
analysis, e.g., Ref. 4!. Furthermore, by consideringt as the
independent variable rather thanw, an additional fixed point
appears at infinity. But more importantly, the emphasis of
analysis is shifted from trying to find an explicit closed for
solution~i.e., the standard approach! to a more intuitive and
qualitative description based on the energy method.

Finally, the phase-plane analysis is applied to the kinem
ics of light rays in the Schwarzschild black hole spacetim
The standard results are discussed and then compared
the timelike phase-plane results. The added significanc
the photon orbits~in the phase-plane context! is that the
equilibrium points of the differential equations exhibit a tra
scritical bifurcation~i.e., a change in stability! at these pa-
rameter values.

II. GENERAL RELATIVISTIC ORBITS

The general relativistic equations of motion for a po
mass with rest mass,m0 , orbiting a mass,M ~assuming for
simplicity that m0!M !, originate from the Schwarzschild
line element:

ds25c2Ldt22L21dr22r 2dV2,
~1!L512r S /r , dV25du21sin2 udw2.

Equation~1! is expressed using spherical coordinates andr S
is the Schwarzschild radius~G is Newton’s gravitational
constant andc is the speed of light!:

r S52MG/c2. ~2!

The Lagrangian is a constant of the motion:
78© 1999 American Association of Physics Teachers
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L5 1
2m0~ds/dt!25 1

2m0c2; t[proper time, ~3!

and if the orbit is confined to the equatorial plane, i.e.,u
5p/2, L takes the explicit form (ṫ5dt/dt, etc.!:

L5 1
2m0c25 1

2m0c2L ṫ22 1
2m0L21ṙ 22 1

2m0r 2ẇ2. ~4!

From the Euler–Lagrange equations there are two additio
constants of motion@~4! is trivial; ~5! and ~6! are first inte-
grals#:

]L/]t50⇒]L/] ṫ5E5m0c2L ṫ, ~5!

]L/]w50⇒]L/]ẇ5J5m0r 2ẇ. ~6!

Physically,E is the energy required for an observer at infi
ity to placem0 in orbit aboutM @it is left as an exercise to
check this physical interpretation by considering radial m
tion in ~4! and then combining with~5! in the Newtonian
limit #. J is the angular momentum of the system and sin
this is constant, there will be no precession of the equato
plane.

Continuing with the equations of motion, using~5! and~6!
to eliminateṫ and ẇ from ~4! and then rearranging algebra
ically gives the following result:

ṙ 2/c25~dr/ds!25Ê22~11J2/m0
2c2r 2!L, ~7!

whereÊ[E/m0c2 defines the total energy per unit rest e
ergy. Noting the functional dependence ofr on the equatorial
angle@i.e., r 5r (w)⇒ ṙ 5(dr/dw)ẇ# allows ~7! to be further
expressed in terms of the constantJ. Furthermore, the degre
of this equation~in r! is reduced by making the usual chan
of variable tou5r S /r . Simplifying algebraically gives the
following result:

~du/dw!252sÊ22~2s1u2!L, ~8!

wheres defines the dimensionless parameter:

s5 1
2~m0crs /J!252~GMm0 /cJ!25 1

2~r S /J!2. ~9!

Equation~9! is expressed on the far right-hand side in t
‘‘geometrized’’ system of units~i.e., G5c51, r S52M ;
see, e.g., Shutz,1 p. 198! with m0 taken as unity for later
comparison with the standard results.

Differentiating~8! with respect tow then gives the familiar
second-order equation in dimensionless form:

d2u/dw21u5s1 3
2u

2. ~10!

As previously discussed, there are two common proced
for calculating the value of perihelion precession. The fi
procedure@procedure~A!# is to approximate an elliptic inte
gral obtained by separating variables in~8! ~see, for example
Ref. 5!. In procedure~B!, ~10! is solved perturbatively or by
using other approximation techniques. However, at this p
we shall deviate from these approaches and consider~10!
from the viewpoint of phase-plane analysis. Additional d
cussion and comparison with the Newtonian case is give
the Appendix.

III. PHASE-PLANE ANALYSIS

To begin the phase-plane analysis of~10! ~see, e.g.,
Strogatz6 or Tabor7 for an introduction!, let us convert this
second-order, nonlinear, inhomogeneous, differential eq
tion to two first-order equations by defining new variable
x5u and y5du/dw. In 2-d form, ~10! is equivalent to
~primes will denote derivatives with respect tow!
79 Am. J. Phys., Vol. 67, No. 1, January 1999
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x85 f ~x,y!5y,
~11!y85g~x,y!5 3

2x
22x1s.

To find the fixed points of~11! ~i.e., equilibrium points of the
solution! we solve simultaneously:x85y850, for x and y.
Therefore, the fixed points of~11! are given by

xW1* 5S 11A126s

3
,0D , xW2* 5S 12A126s

3
,0D . ~12!

Alternatively, by expressingy in terms ofx using ~8!:

x85y56@2sÊ22~2s1x2!~12x!#1/250, ~13!

and then solving simultaneously:x85y850, for Ê2 and x
rather thanx andy, the corresponding energies at each fix
point are expressed solely in terms ofs:

Ê1
2215

2s@124s2~126s!1/2#

@~126s!1/221#3 ,

~14!

Ê2
2215

2s@2114s2~126s!1/2#

@~126s!1/221#3 ,

respectively. Therefore, solving simultaneously forÊ2 andx
gives additional information on the dynamics. Furthermo
the phase-plane equations analogous to~11! that result from
the proper and coordinate time analysis considered in
VI ~and also in the Newtonian case! give nonphysical roots
when solving only forx andy ~i.e., they do not correspond t
the effective potential extrema!. However, these additiona
roots are eliminated by solving forÊ2 and x as illustrated
above and as discussed in Sec. VI.

To give a general classification of the fixed points~12! a
linear stability analysis must be performed. Essentially, t
amounts to series expanding~11! about an arbitrary fixed
point in the small parameters:dx5x2x* and dy5y2y* .
Dropping second-order terms, the resulting first-order lin
equations are expressed in matrix form:

S dx8
dy8 D'S ]xf

]xg
]yf
]yg

DU
xW5xW*

S dx
dyD

5S 0
3x21

1
0DU

xW5xW*
S dx
dyD[AuxW5xW* dxW . ~15!

The general solution of~15! is an exponential whose stabilit
at each fixed point is analyzed by classifying the eigenva
of the matrix A. Solving the eigenvalue problem, we fin
roots to

uA2lI u50, ~16!

but sinceA is 232, the characteristic polynomial may b
expressed:

l22tl1D50, ~17!

where t[traceA, and D[determinantA. The eigenvalues
are roots of~17!:

l5 1
2~t6At224D!, ~18!

and accordingly, the exponential solutions of~15! are classi-
fied by various regions of Fig. 1@dots mark the location o
the fixed points given in~12!#.

Briefly, region I corresponds to a ‘‘saddle-node’’ fixe
point, whose stable and unstable manifolds@corresponding to
79Bruce Dean
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positive and negative~real! eigenvalues, respectively# are
given by the eigenvectors of~15!. Region II represents an
‘‘unstable node,’’ i.e., two positive real eigenvalues witht2

24D.0; region III gives solutions having one~positive!
real and one complex eigenvalue~‘‘unstable spirals’’!, while
regions II8 and III8 are the complimentary stable solutions
regions II and III, respectively. The ‘‘boundary’’ cases a
given byt254D ~degenerate nodes and lines of fixed poin!
andt50, D.0 are ‘‘centers’’ giving periodic orbits in the
phase plane. A complete discussion of these cases will no
given here, we simply use these results. Refer, for insta
to Strogatz6 for additional analysis and details.

Evaluating the matrixA in ~15! at each fixed point of~12!,
the following classifications are obtained:

~19!

corresponding to a ‘‘saddle’’ and ‘‘center-node’’ fixed poin
respectively~see Fig. 1 for the placement of these points!. As
previously discussed, the linear stability analysis gives
exponential solution about each fixed point with the pha
plane trajectories shown in Fig. 2@the directions follow from
~11! and are indicated by arrows#.

Physically, trajectories about the center node corresp
to elliptical orbits and we will use this fact in a moment
obtain the value for perihelion precession. However,

Fig. 1. Eigenvalue classification.

Fig. 2. Linear stability phase plane.
80 Am. J. Phys., Vol. 67, No. 1, January 1999
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saddle node that appears is not predicted by Newto
theory, but is due to an unstable orbital radius originat
from ther 23 term of the effective potential derived from~8!
@see also~33! and the Appendix#:

V̂eff
2 5~11x2/2s!~12x!. ~20!

As a result of this instability, there are orbital effects n
present in the Newtonian theory which have been sum
rized in the literature~see, e.g., MTW,1 p. 637!. But what is
nice in the phase-plane approach is that this result come
very quickly in the analysis as a secondary fixed point~see
Sec. V!.

IV. PERIHELION PRECESSION

Physically, perihelion precession means that the dista
of closest approach~i.e., the perihelion; -helion refers to the
sun! between two orbiting bodies begins to revolve about
orbit in the same sense as the orbiting body~see Fig. 3!.
Therefore, planetary orbits do not close but are separate
a small correction,Dw, after completing a single orbit. Fo
the planet Mercury this is observed to be approximately
arcsec per century with 5329 accounted for by a Newtonia
analysis of external planetary perturbations. However, th
are 439 not explained from a Newtonian analysis, but p
dicted to within experimental error by Einstein’s theory.

To perform the perihelion calculation simply solve~15!
aboutxW2* . This first-order system is rewritten here as

dx85dy, dy852v2dx, v5~126s!1/4. ~21!

The solutions are centers corresponding to precessing e
tical orbits ~see Fig. 2!:

dx~w!5A cosvw1B sin vw,
~22!dy~w!52vA sin vw1vB cosvw,

with A andB arbitrary constants. Choosing initial condition
at the position of perihelion:

dx~0!5u0 , dy~0!5du~0!/dw50, ~23!

~22! becomes

dx~w!5u~w!5u0 cosvw,
~24!dy~w!5u8~w!52vu0 sin vw,

giving a typical ‘‘center’’ solution about the fixed pointxW2* .
As previously discussed, in ‘‘physical’’ space the orbit

m0 aboutM does not close. However, the phase-plane tra
tory given by ~24! must close after a single orbit since th
system is conservative~ignoring radiative effects!. There-

Fig. 3. Schematic of perihelion precession.
80Bruce Dean
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fore, the period of a single orbit,F, is defined from the
period of the phase space trajectory given by~24!:

vF52p. ~25!

Solving for F, and then substituting forv in the limit of
small s gives the following result:

F52pv21'2p13ps. ~26!

The Newtonian calculation gives only the first term,F
52p, as expected. However, as seen in~26!, the Schwarzs-
child solution gives the correction:

Dw53ps56p~GMm0 /cJ!2, ~27!

which is the usual value~expressed in MKS units! obtained
from procedures~A! or ~B! @compare also with~9! for the
standard expression in the ‘‘geometrized’’ system of unit#.

V. AN ‘‘EXACT’’ PHASE PLANE

In Sec. IV a linear stability analysis has been conside
about each fixed point. However, this procedure gives o
‘‘local’’ information on the general relativistic orbits, and
in fact one shortcoming of the linear stability analys
Therefore, no correspondence can be made with parab
hyperbolic, or orbits near the black hole event horizon us
Fig. 2 alone. However, since the equations of motion
integrable due to so many constants of motion@i.e., ~4!–~6!#,
an exact phase plane can be constructed and then se
‘‘global’’ features of these orbits may be deduced as a res
In addition, other qualitative features of the Schwarzsch
orbital dynamics may be derived from this diagram~Fig. 4!
as discussed below.~Note: Since the equations are integra
no chaos exists here. However, if additional degrees of f
dom are allowed, the possibility for chaos exists; see, e
Ref. 8 for a discussion of chaos in relativistic orbital dyna
ics!.

To obtain an exact phase-plane diagram, consider
‘‘level curves’’ found by taking the ratio ofx8 andy8 from
~11!, and then integrating to get a conserved quantity:

dy/dx5~ 3
2x

22x1s!/y⇒y25b1x32x212sx. ~28!

The value of the constantb is easily found by compariso
with ~8!:

b52s~Ê221!, ~29!

so that~28! may be alternatively expressed:

Ê2215~y21x22x3!/2s2x. ~30!

In Fig. 4, the level curves corresponding to different valu
of Ê in ~30! are shown with the effective potential~20! ~with
s5 1

9!. These curves are exact solutions of~11! for various
energies and initial conditions, and should be compared
the approximate solutions given by the linear stability ana
sis of Fig. 2. The vertical dotted line atr S /r 51, labels the
black hole event horizon.

The value ofs used in~30! has been greatly exaggerat
to better illustrate the qualitative features of the exact ph
plane. For a more realistic value ofs consider Mercury’s
orbit—taking the value ofDw over a single orbit and the
using ~27!:

3ps'0.1049⇒s'5.431028, ~31!
81 Am. J. Phys., Vol. 67, No. 1, January 1999
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or for the binary pulsar system discovered by Hulse
Taylor:9

3ps'4°⇒s'7.431023. ~32!

To check thats5 1
9 is a reasonable value in Fig. 4, an upp

bound may be placed ons for the existence of stable o
unstable orbits from either phase-plane fixed point. By
spection of~12!, if s. 1

6 then no~real! fixed points exist for
a given value of energy and angular momentum. To trace
physical origin of this value and to understand the topolo
cal structure of Fig. 4 from a more general viewpoint, n
that wheny50 in ~30! the effective potential is obtained:

V̂eff
2 215~x22x3!/2s2x. ~33!

The locations of the stable and unstable orbits are foun
usual by solving]xV̂eff50 for x, which gives identically~12!.
From ~12!, no extrema exist fors. 1

6, establishing an uppe
bound ons for stable or unstable orbits. Fors5 1

6, stable
orbits ~smallest value of! and unstable orbits~largest value
of! coincide at

r 1,253r S , ~34!

providing an inflection point in the plot ofV̂eff
2 21 vs x as

shown in Fig. 5 for several values ofs ~Ref. 10! ~Note: The
standard presentations on this diagram are commonly
played asV̂eff

2 21 vs 1/x; see, e.g., Wald, Ohanian, an
Ruffini, or MTW1 for an alternative parametrization usingr S

and J/m0c2!. But another critical value ofs occurs when
Ê251. To see this, solveÊ1

22150 using~14! to gets5 1
8,

as displayed in Fig. 5. Therefore, qualitatively distinct orb
exist based upon the following values ofs:

0,s, 1
8, s5 1

8,
1
8,s, 1

6, s5 1
6, s. 1

6. ~35!

For s. 1
6 there is insufficient angular momentum form0 to

sustain an orbit, therefore the mass simply falls intoM and
correspondingly,V̂eff has no extrema. The physical signi

Fig. 4. An ‘‘exact’’ phase plane fors51/9.
81Bruce Dean
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cance ofs5 1
6 is discussed above~34!. The physical meaning

of the other values in~35! are understood by analyzing th
separatrix11 structure of~30!. Essentially, this corresponds t
a limitation placed upon the types of orbits that may ex
before an unstable orbit is reached and the kinematic cla
fication of the separatrices as distinct unstable orbits.

In essence, the separatrix gives a graphic representatio
the critical relationship between energy and angular mom
tum at the unstable orbital radius~see Fig. 6!. For a given
angular momentum~s!, the critical energy of the unstabl
orbit is calculated fromÊ1 of ~14!. For the values ofs plot-
ted in Fig. 5, these energies are computed and marked
horizontal lines. Substituting these values ofÊ221 into ~30!,
the separatrices corresponding to~35! are plotted in Fig. 6.

These distinct separatrices divide the phase plane into
regions of motion for 0,s, 1

6 ~s5 1
9 is just one special case

in Fig. 4!. To begin, consider Fig. 4 in the region surroun
ing the stable fixed pointxW2* . The oval trajectory in this
region corresponds to an elliptical orbit and was used ear
to find the value for perihelion precession. A unique pa
bolic orbit occurs as the phase-plane trajectory just touc
the y axis and separates the hyperbolic and elliptic orb
The hyperbolic orbit12 is characterized by a trajectory ap
proachingM from infinity, but then returning to infinity with
constantdr/dw. Therefore, the separatrix of Fig. 4~typical

Fig. 5. Schwarzschild effective potential.

Fig. 6. Separatrices for selected values ofs.
82 Am. J. Phys., Vol. 67, No. 1, January 1999
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for s, 1
8! corresponds to a critically unstable hyperbolic o

bit that separates trajectories spiraling intoM ~above the
separatrix! or escaping to infinity~below the separatrix!.13

Similarly, as illustrated in Fig. 6 these separatrices
summarized according to the following values ofs as dis-
tinct unstable orbits:

0,s, 1
8⇒unstable hyperbolic,

s5 1
8⇒unstable parabolic, ~36!

1
8,s, 1

6⇒unstable elliptic.

It is obvious from Fig. 6 that fors in the range:18<s, 1
6,

only elliptical orbits are possible~aboutxW2* ! before the un-
stable orbit is reached, while the case 0,s, 1

8 allows all
three: hyperbolic, parabolic, and elliptic as discussed ab
But these results are consistent with the orbital motion
tained from inspection of the effective potential for differe
values ofs in Fig. 5. These qualitative differences over t
range of unstable orbits have not been pointed out in
literature, but this is not to imply that the Schwarzsch
orbital dynamics are poorly understood; see, e
Chandrasekhar14 for an alternative but lengthy analysis.

It should be noted that a physical orbit corresponding
the separatrix can never be achieved in finite proper time
do so would imply that the phase-plane trajectories cha
direction atxW1* , which is not possible in a deterministic sy
tem. To see this, consider the proper time equivalent of~30!
@this is ~7! after rewriting the equation using the definition
s in ~9! and again usingx5r S /r #:

~dr/ds!25Ê2211~x32x2!/2s1x. ~37!

Separating variables gives an elliptic integral:

ct56E dr/A~Ê221!1x2x2/2s1x3/2s, ~38!

which diverges to6` as r approaches the unstable orbit
radiusr 1 of ~12! @and~14! is substituted forÊ221#, i.e., for
a particle approaching the saddle point along the separa

From the separatrix analysis it is apparent that a bifur
tion occurs at the critical values5 1

6, i.e., the topological
structure of the phase plane changes as the two fixed p
move together, coalesce into a single fixed point, and t
disappear from the phase plane ass is further increased
above the critical value 1/6. Therefore, the Schwarzsc
orbital dynamics may be interpreted and analyzed as a
servative 2-d bifurcation phenomena. Specifically, this bifu
cation is a saddle-center bifurcation15 ~see Fig. 7!, and sum-
marizes the range of physically possible orbits that m

Fig. 7. Schwarzschild bifurcation diagram.
82Bruce Dean
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that
occur as the energy and angular momentum are varied
s.0. But from a more general viewpoint one should a
consider negative values ofs @although it is clear thats
,0 has no physical interpretation sinces must be positive
definite according to~9!; note also thats50 in ~11! gives
the phase-plane equations for light rays—see~44! below#.
For s,0 the two fixed points@Eq. ~12!# change stability at
s50 as shown in Fig. 7. Therefore, another~transcritical!
bifurcation occurs ats50 ~see, e.g., Strogatz,6 pp. 50–52!,
followed by the saddle-center bifurcation ats5 1

6.
Finally, an interpretation of the phase-plane trajectories

the right of the separatrix should be given, namely tho
trajectories leaving and then returning through the event
rizon. These trajectories are clearly nonphysical since i
impossible for any classical particle or light ray to esca
from within the black hole horizon. The origin of these tr
jectories may be understood as a consequence of the sym
try of ~11! under the interchange:w→2w; y→2y, where
w→2w is due to the time-reversal symmetry of th
Schwarzschild dynamics. As a consequence, this syste
classified asreversibleand gives the symmetry of Fig. 4~and
Fig. 6! about thex axis, but with the vector field below thex
axis reversing direction.16

VI. PROPER AND COORDINATE TIME PHASE
DIAGRAMS

In the standard analysis on relativistic orbital dynami
the proper time parameter is replaced by the equatorial a
as the independent variable. One advantage of this repl
ment is to simplify the algebra of a perturbative analysis, a
is a carryover from the standard techniques applied in
Newtonian case~see the Appendix!. However, as far as the
phase-plane analysis is concerned, there are no essentia
ficulties analyzing the dynamics using the proper time~or
coordinate time! as independent variables. In fact, there
additional information available which also gives a nontriv
introduction to dynamical invariance.

To demonstrate the invariance of the effective poten
between the proper and coordinate time reference fram
start with~7! to obtain the proper time result~Note: Usingw
rather thant eliminates thex4 leading term appearing be
low!:

~r S /c!2ẋ25x4@Ê22~11x2/2s!L#. ~39!

The corresponding coordinate time expression is obtai
using: ẋ5(dx/dt) ṫ, in combination with~5! which gives

~r S /c!2~dx/dt!25x4~L/Ê!2@Ê22~11x2/2s!L#. ~40!

Solving ~40! for Ê2 gives the coordinate frame expressi
for the total energy:

Ê25
x4~11x2/2s!L3

x4L22~r S /c!2~dx/dt!2 . ~41!

By inspection of~41!, as dx/dt→0, the effective potentia
~20! is recovered, i.e.,V̂eff

2 →V̂eff825V̂eff
2 is invariant between

the proper and coordinate time reference frames. There
the dynamical structure is invariant, or alternatively stat
the extrema ofV̂eff

2 are identical in either reference fram
However, the phase diagrams in each case are not iden
due to the existence of an additional ‘‘frame-depende
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fixed point that appears in the coordinate reference fram
the event horizon~see Fig. 8!.

To summarize these results, the corresponding ph
plane equations analogous to~11! in both the proper and
coordinate time reference frames are derived by different
ing ~39! and ~40!, respectively. In each case the results a
given by

dx/dt5y56x2@Ê22~11x2/2s!L#1/2,
~42!

dy/dt5x3@7x326x2110xs18s~Ê221!#/4s,

and

dx/dt5y56x2L1/2@Ê22~11x2/2s!L#1/2/Ê,
~43!dy/dt5x3L@9x4215x312x2~317s!

12xs~6Ê2211!28s~Ê221!#/4s.

Although ~42! and ~43! are more complicated algebraical
than~11!, the simultaneous solution ofẋ5 ẏ50 for Ê2 andx
in each case reduces to~12! and ~14! identically, but with
another fixed point,x50, at infinity and atx51 in the case
of ~43!. However, the fixed point at infinity exists for th
Newtonian case as well, and is discussed in the Appen
The fixed point at the event horizon is obviously coordina
dependent and does not correspond to any extrema of
effective potential. Nevertheless, this fixed point has phys
consequences for observers in the coordinate refere
frame—explaining the slowing down of objects and redsh
of signals approaching the event horizon.

As discussed below~14!, there are additional nonphysica
roots obtained when solvingẋ5 ẏ50, only for x andy. The
nonphysical nature of these fixed points is due to the fact
there must be a constraint placed uponÊ whent or t is used

Fig. 8. Proper and coordinate time phase diagrams.
83Bruce Dean



-
oi
o

ac
di

ca

on

s

ur

nt
h
o

s
s
in
c

S
e
,

d

o
-
e

e
m
n

i
rb

e

ph

r
t

the

a-
the

and
g a
a-
ow

or-
the

ius
that

then
os-

its
xi-
si-

ous
sive
aph
and

ulat-
ized
g of
h the
ained
re
the

tion,
con-
lane
hasis
as the independent variable. Solving simultaneously the
pressions fory given in ~42! or ~43! gives the proper con
straint onÊ and as a result forces these fixed points to c
cide with the extrema of the effective potential. This is als
feature of the Newtonian dynamics when usingt as the in-
dependent variable.

VII. LIGHT RAYS

The analysis of photon orbits in the Schwarzschild sp
time is a straightforward application of the techniques
cussed for timelike orbits. For light rays,dt50, which in
turn implies that bothE andJ are divergent from~5! and~6!,
although their ratio remains finite. As a result,s→0, and the
phase-plane equations for light rays follow as a special
of ~11!:

x85y56@1/b22x2~12x!#1/2,
~44!

y85 3
2 x22x,

where 1/b2[2sÊ2 is a constant expressing the dimensi
less impact parameter,b, as the finite ratio ofÊ, J, andr S .

The simultaneous solution ofx85y850 for 1/b2 and x
results in two fixed points and the corresponding value
the impact parameter:

$x15 2
3;1/b25 4

27%, $x250;1/b250%, ~45!

giving the standard results for the unstable orbital radius,x1 ,
and the impact parameter at which this instability occ
The fixed point,x2 , is a center node~at infinity! about which
the hyperbolic orbits ‘‘precess’’~see Ref. 12 for a comme
on the timelike case! and gives the standard result for lig
bending. Therefore, the perihelion precession of timelike
bits and light bending are actually special cases of one
other: In the timelike case this center node fixed point i
finite r and allows ‘‘real’’ circular orbits; but for light ray
this fixed point moves to infinity and gives the precess
hyperbolic orbits noted above. However, a phase-plane
culation of light bending analogous to that discussed in
III does not work here. This is due to the fact that a lin
stability analysis~15! ‘‘kills’’ the necessary terms; namely
the impact parameter disappears from the matrixA ~a similar
result occurs when calculating the period of a simple pen
lum for large angles using this technique!.

The phase-plane level curves for light rays in Fig. 9 c
respond to different values of 1/b2. These are shown to
gether with the locations of the fixed points and photon
fective potential:x2(12x). The most striking differenc
between the photon and timelike phase-plane dyna
~comparing Figs. 9 and 4! is that the center node fixed poi
moves to the origin ass→0 ~as discussed above!. As a
result, circular photon orbits do not exist in any ‘‘dynam
cal’’ sense, but become circular in geometry as the o
approach the separatrix. To see this use the definition ofy in
the first equation of~44!, and then separating variabl
shows thatw→` as x→x1 and 1/b2→ 4

27 @this result is
analogous to the proper time divergence pointed out in~38!#.
Therefore, the separatrix corresponds to the unstable ‘‘
ton sphere’’ that is commonly discussed in the literature~see,
e.g., Ohanian and Ruffini,1 p. 410!.

The physical interpretation of the various phase-plane
gions of Fig. 9 is similar to that of Fig. 4, but there a
important differences. For light rays with impact parame
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1/b250, these orbits just graze the event horizon from
inside and simultaneously~in an unrelated trajectory! reach
the center node fixed point of the effective potential~see Fig.
9!. For 1/b2,0, b loses its interpretation as an impact p
rameter since the trajectories in this case originate from
singularity at r 50 and lie within the horizon. For 1/b2

, 4
27, the trajectories are confined to within the separatrix

correspond to the light rays arriving from infinity, reachin
turning point@given by the appropriate root of the first equ
tion in ~44!#, and then return to infinity as discussed bel
~45!. For 1/b2. 4

27, a photon arrives from infinity~above the
separatrix! and then falls through the event horizon. The c
responding time-reversed trajectories are given below
separatrix.

The trajectories to the right of the unstable orbital rad
of Fig. 9 are also interpreted as time-reversed paths
reach a maximum distance from the event horizon and
return to the singularity. But another interpretation is p
sible using simple energy considerations: A photon and
time-reversed counterpart originate from a point of ma
mum distance from the horizon, and then both proceed
multaneously from this point into the horizon. The analog
interpretation is also possible in the timelike case for mas
particles~see Fig. 4 and the discussion in the final paragr
of Sec. V!. However, these are classical interpretations
should not be identified with quantum phenomena.

VIII. DISCUSSION

We have considered an alternative procedure for calc
ing the value of perihelion precession and have summar
the Schwarzschild orbital dynamics in the modern settin
phase-plane analysis. Contrasting these calculations wit
standard textbook procedures, the main results are obt
very quickly while minimizing the algebra, but placing mo
emphasis on the physics. For example, by calculating
value for perihelion precession using a perturbative solu
a departure is made from an analysis based on physical
cepts to an exercise in algebra. However, in the phase-p
approach, the physical concepts are given greater emp

Fig. 9. Null geodesics phase plane.
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and made more accessible to beginning students. This is
to the fact that the phase-plane technique itself is base
sentially on the ‘‘energy-method’’ diagrams taught in int
ductory mechanics courses. The analysis presented in
VI demonstrates that important topics such as dynamica
variance are easily handled using the phase-plane techni
These provide nontrivial and physically interesting examp
which normally are difficult conceptually for beginning st
dents.

In addition, the traditional analysis of the effective pote
tial could be augmented with discussion on the ‘‘exa
Schwarzschild phase plane, or more specifically its separ
structure. Essentially, the separatrix gives a geometric re
sentation of the critical relationship occurring between
ergy and angular momentum, and as such, divides the p
plane into physically distinct regions of motion. By varying
dimensionless parameter involving the angular momentu
saddle-center bifurcation occurs as the two fixed points
lesce and disappear—altering the phase-plane topology
the case of light rays the separatrix corresponds physica
an unstable ‘‘photon sphere’’ as discussed earlier. As a
cial case of~11!, the photon orbits also provide a transcritic
bifurcation point of the dynamics—exchanging stability
s50.

For additional applications it would be interesting to a
lyze solutions other than the Schwarzschild case, e.g.
Reissner–Nordstrom~a charged, spherically symmetr
black hole!, the Kerr solution~a rotating black hole!, or the
Kerr–Newman solution~a charged, rotating black hole!. Fur-
ther applications would include an analysis of cosmolog
solutions and nonconservative orbital dynamics~i.e., systems
emitting gravitational radiation!, and also solutions stem
ming from alternative theories of general relativity. Analy
of these topics will appear elsewhere.

In summary, constructing an exact phase plane for an
bitrary solution will only be possible if the fixed point alg
braic equation,x85y850, is of fourth order or less~and in
addition if a sufficient number of first integrals exists!. Oth-
erwise, finding roots will be difficult if not impossible. How
ever, a numerical approach could always be taken,
would be motivated by the interesting pictures that re
from combining the fixed point structure of general relativ
state space into a diagram that includes the event horiz
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APPENDIX: NEWTONIAN PHASE-PLANE
ANALYSIS

As discussed earlier in Sec. I, the standard analysis o
Newtonian orbital dynamics is based on the change of in
pendent variable,t→w, for the purpose of finding a close
form solution describing the orbital geometry. But a pha
plane analysis of the differential equations using time as
independent variable is no more complicated in princ
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than usingw. Furthermore, there are results shared by
relativistic case~discussed in Sec. VI! that are clarified in
this analysis.

To begin, consider the Newtonian limit of the equatio
derived in Sec. II. The effective potential/~unit rest energy! is
given in ~20!, and is defined asV̂eff

2 which gives the proper
Newtonian limit for V̂eff ~to within an additive constant! in
the limit of larger. As a result, the Newtonian limit of~20!
is given by

V̂eff5@12x1~x22x3!/2s#1/2'12x/21x2/4s, ~46!

which differs from the standard Newtonian form by an ad
tive constant~corresponding to the rest mass energy ofm0!.
The standard Newtonian effective potential energy is cho
to be zero at infinity, giving the usual expression:

V̂eff5x2/4s2x/2, ~47!

compared to the relativistic limit where the energy at infin
corresponds to the rest mass energy. But this additive c
stant is of little consequence insofar as the dynamics
concerned, and so we adopt~47! for the remaining discus-
sion @Note: From a certain viewpoint~see Kompaneyets,4 p.
44! one may regard this difference as a choice of ‘‘gauge
i.e., the ‘‘Newtonian gauge’’ takesV̂eff50 at infinity, while
the special ‘‘relativistic gauge’’ isV̂eff51#.

The corresponding Newtonian expression for~39! is de-
rived using the standard Lagrangian and Hamiltonian resu

~r S /c!2ẋ252x4@Ê2V̂eff#, ~48!

where V̂eff is given by ~47! and x5r S /r . Although the
choice of units seems odd at first, this form gives the m
straightforward comparison with the relativistic case. As
check,~48! reduces to@after substituting~2!, ~47!, and then
~9!#

~du/dt!252u4~J/m!2@u222u0u2bu
2#, ~49!

whereu51/r and u05GMm2/J2 gives the standard radiu
of a circular orbit. The constant:bu

2[1/b252mE/J2 ex-
presses the impact parameter~for a particle approaching
from infinity! in terms ofE andJ. The zeroes of~49! give the
standard turning points of the effective potential~aside from
u50!. Furthermore, substitutingu5u(w) and then~6! into
~49! ~the Newtonian expression forJ is identical in form to
the relativistic case! leads to the standard second-order d
ferential equation that is commonly evaluated for the ana
sis of these orbits.

Continuing with the analysis, differentiating~48! gives the
dimensionless phase-plane equations expressed usingt as the
independent variable:

ẋ5y56x2c@4sÊ12sx2x2!] 1/2/r SA2s,
~50!

ẏ52x3c2~3x225sx28sÊ!/2sr S
2.

Solving simultaneously,ẋ5 ẏ50 for Ê2 andx then gives the
two fixed points:

$x15s;Ê52s/4%, x250. ~51!

The first gives the standard results: a center node corresp
ing to a Newtonian circular orbit with radiusr 1 and energy
given by
85Bruce Dean
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x15s⇒r 15r S /s5J2/GMm2,
~52!

Ê52s/4⇒E52m~GMm/J!2/2.

The second fixed point at infinity simply expresses the f
that it takes an infinite amount of time for the orbiting pa
ticle, m, to reach the turning point at infinity~in the case of
parabolic and hyperbolic orbits!—a fixed point that is shared
in the relativistic orbital dynamics. For comparison with t
relativistic phase-plane results the Newtonian phase diag
for ~50! is shown in Fig. 10.

a!Present address: NASA Goddard Space Flight Center, Mailstop: 55
Greenbelt, MD 20771.
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THE AWE FACTOR

The other aspect of science, the one that I am more concerned with, is the wonder, the ‘‘awe
factor.’’ I ask myself, what is the appeal of religion, what is the appeal of UFOs, what is the
appeal of von Da¨niken or Velikovsky, all that nonsense? I suspect that a part of it is the kind of
awesome romance that science ought to be the master of. Don’t let us allow religion to walk away
with the awe factor. Science has orders of magnitude more to offer in this field. Black holes are
incomparably more wondrous, more romantic, than anything you read in the pseudoscientific
literature, in New Age drivel, in the ‘‘occult,’’ in the Bible. Let’s not sell science short.

Richard Dawkins, ‘‘The ‘Awe’ Factor,’’ Skeptical Inquirer17~3!, 242–243~1993!.
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