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A calculation of perihelion precession is presented that utilizes a phase-plane analysis of the general
relativistic equations of motion. The equations of motion are reviewed in addition to the phase-plane
analysis required for the calculation. “Exact” phase planes for orbital dynamics in the
Schwarzschild geometry are discussed, and bifurcations are identified as a dimensionless parameter
involving the angular momentum is varied. ®99 American Association of Physics Teachers.

I. INTRODUCTION frames, the phase diagrams in each case are not identical.
his is due to the existence of an additional phase-plane

ixed point that appears in the coordinate reference frame at
e event horizon. This fixed point is obviously coordinate

The perihelion precession of planetary orbits has provide
one of the earliest experimental tests of Einstein’s gener?

th_eory of rel_ativity. In the stand_ard textbook presentation o dependent, but must exist to explain the apparent “slowing
this calculation there are essentially two approaches taken tQown” of objects (and redshift of signajsapproaching the

calculate its value from the nonlinear equations of motion: \4i-on as seen by an observer in the coordinate reference

(a) approximate an elliptic integral, frame. . _ o
(b) find a perturbative solution to the general relativistic For comparison with the relativistic case, the correspond-
equations. ing Newtonian phase-plane results are discussed in an Ap-

pendix. Not only does this analysis complement the dynam-

Although (a) and(b) are the most common methods appear-ics considered in Sec. VI, but it is shown that an analysis of
ing in the literature, other approximation methods do existyewtonian orbits using time as an independent variable is
Wald," for instance, considers small oscillations about anjyst as instructive and no more complicated in principle than
elliptical orbit; Misner, Thorne, and Wheel@TW)" con-  Yysing the equatorial angle as the independent variie-
sider nearly circular orbits and then later use the RFM&-  eyer, the opposite is true when using the standard methods of
rametrized Post-Newtonian'formalism. The purpose of this analysis, e.g., Ref.)4 Furthermore, by consideringas the
paper is to illustrate how the periheli_on calculation may b?independent variable rather thanan additional fixed point
performed and to present an analysis of the Schwarzschilgypears at infinity. But more importantly, the emphasis of the
orbital dynamics based on a standard technique of nonlinegjnaysis is shifted from trying to find an explicit closed form
analysis: the phase-plane approsée also Refs. 2. and.3  gsp|ytion(i.e., the standard approado a more intuitive and
Not only is the calculation simpler to perform in the mOdemquaIitative description based on the energy method.
setting of phase-plane analysis, but there is more physics t0 fing|ly, the phase-plane analysis is applied to the kinemat-
be learned with less algebra compared with the standard press of light rays in the Schwarzschild black hole spacetime.
cedures. _ , The standard results are discussed and then compared with

The contents of this paper are organized as follows. Ifne timelike phase-plane results. The added significance of
Sec. Il the general relativistic equations of motion are detpe photon orbits(in the phase-plane contexis that the
rived. The goal here is to not only make the presentation agqyilibrium points of the differential equations exhibit a tran-

self-contained as possible, but to “tailor” the derivation to- geritical bifurcation(i.e., a change in stabililyat these pa-
ward a discussion emphasizing the phase-plane analysis, apgneter values.

for easy comparison with the corresponding Newtonian cal-

culation. In Sec. lll, the phase-plane analysis is developed

and in Sec. IV applied to obtain the well-known value of || GENERAL RELATIVISTIC ORBITS

perihelion precession. In Sec. V, a discussion of the

Schwarzschild orbital dynamics is given based upon an “ex- The general relativistic equations of motion for a point

act” general relativistic phase plane. The standard results an@ass with rest massy,, orbiting a massM (assuming for

discussed, but also an alternative viewpoint for analyzing th@implicity that my<M), originate from the Schwarzschild

orbital dynamics is presented based upon the separatrijhe element:

structure of the phase plane. In this approach, the critical D 2 142 22

relationship that holds between energy and momentum at the ds’=c*Adt?—A~1dr?—r?dQ?,

unstable orbital radiugi.e., the separatrixsummarizes the A=1-rg/r, dQ2=d@?+sir? 6de>. (1)

range of physically possible orbits, and demonstrates a

saddle-center bifurcation as a dimensionless parameter if=quation(l) is expressed using spherical coordinates rnd

volving the angular momentum is varied. is the Schwarzschild radiuéG is Newton’s gravitational
In Sec. VI, a phase-plane analysis of the dynamical invariconstant and is the speed of light

ance between the coordinate and proper time reference fe=2MG/c2 @

frames is given. Although the dynamical structyre., the S '

effective potentidl is invariant between the two reference The Lagrangian is a constant of the motion:
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L=2Imo(ds/dr)?=3m,c?;, r=proper time, ©) X' =f(x,y)=Y,

and if the orbit is confined to the equatorial plane, i., y'=g(x,y)=3x*-x+o0. (11)

=m/2, L takes the explicit form (= dudr, etc): To find the fixed points of11) (i.e., equilibrium points of the

L= 3moc?= 3MoC®At*— 3moA % — 3mor2e?. (4)  solution we solve simultaneouslyi’ =y’ =0, for x andy.

From the Euler—Lagrange equations there are two additiondl "erefore, the fixed points diL1) are given by

constants of motiof(4) is trivial; (5) and (6) are first inte- 1+V1—60 1-V1—60
gralg: X} = T’O) , X5= ( T’O) ) (12)
dL/t=0= gL/ gt=E=myCc?At, 5 . o .
_ 0 ,. © Alternatively, by expressing in terms ofx using (8):
ILIde=0=0L/de=J=myr“¢. 6 A
¢ ¢ o ¢ © X' =y=£[20E2~ (20+x?)(1-x)]*?=0, (13

Physically,E is the energy required for an observer at infin- .

ity to placemy in orbit aboutM [it is left as an exercise to and then solving simultaneously’ =y’ =0, for E? and x
check this physical interpretation by considering radial mo-<ather tharx andy, the corresponding energies at each fixed
tion in (4) and then combining witl{5) in the Newtonian point are expressed solely in termsaf

limit]. J is the angular momentum of the system and since a4 1
this is constant, there will be no precession of the equatorial éi_ 1= 20[1~ 40 (1}2 603) i ,
plane. [(1-60)7""—1]
Cc')nt.lnum_g with the equations of motion, usm@ and(6) ) 20 —1+405—(1-60)"? (14)
to eliminatet and ¢ from (4) and then rearranging algebra- E%— 1= I 3 ,
ically gives the following result: [(1-60)""—1]
r2/c2=(dr/ds)?= EZ—(1+J2/m§c2r2)A, (7)  respectively. Therefore, solving simultaneously Erandx

. gives additional information on the dynamics. Furthermore,
whereE=E/myc? defines the total energy per unit rest en- the phase-plane equations analogouglfl) that result from
ergy. Noting the functional dependencerain the equatorial the proper and coordinate time analysis considered in Sec.
anglefi.e.,r=r(¢)=r=(dr/de)¢] allows(7) to be further VI (and also in the Newtonian cgsgive nonphysical roots
expressed in terms of the constdnEurthermore, the degree when solving only foix andy (i.e., they do not correspond to
of this equatior(in r) is reduced by making the usual changethe effective potential extremhaHowever, these additional
of variable tou=rg/r. Simplifying algebraically gives the roots are eliminated by solving fd? and x as illustrated
following result: above and as discussed in Sec. VI.

- To give a general classification of the fixed poit®) a
(du/dg)?=20E"~ (20 +u*)A, (8) Iineargstabilitg analysis must be performed. Esgentially, this
where o defines the dimensionless parameter: amounts to series expandiri@l) about an arbitrary fixed
_1 5 2_1 2 point in the small parametergx=x—x* and dy=y—y*.
7= 2(MCrs/J)"=2(CMmy/J)"=2(rs/J)". © Dropping second-order terms, the resulting first-order linear
Equation(9) is expressed on the far right-hand side in theequations are expressed in matrix form:
“geometrized” system of units(i.e., G=c=1, rg=2M;

see, e.g., Shutzp. 198 with m, taken as unity for later &,)%(axf dyf (5)()
comparison with the standard results. oy 99 G|z g\ Y
Differentiating(8) with respect tap then gives the familiar 0 1 Sx
second-order equation in dimensionless form: = =Al-_ - 5%
q I—1 O) sy Alg—zx OX. (15

d2u/de®+u= o+ 32 (10) x=xr
The general solution dfL5) is an exponential whose stability

€3t each fixed point is analyzed by classifying the eigenvalues

Slof the matrix A. Solving the eigenvalue problem, we find
roots to

As previously discussed, there are two common procedur
for calculating the value of perihelion precession. The fir
procedurd procedurg/A)] is to approximate an elliptic inte-
gral obtained by separating variabled& (see, for example,
Ref. 5. In procedureB), (10) is solved perturbatively or by |A—\l|=0, (16)
using other approximation techniques. However, at this poin . . - .

we shall deviate from these approaches and congiti@r E)ut sinceA is 2X 2, the characteristic polynomial may be
from the viewpoint of phase-plane analysis. Additional dis-&XPressed:

cussion and comparison with the Newtonian case is givenin = \2_— 1\ + A=0, (17)

the Appendix. _ _
where r=trace A, and A=determinantA. The eigenvalues

are roots of(17):

1 2
To begin the phase-plane analysis 0 (see, e.g., A=z(7xVr—44), (18)
Strogat? or Tabof for an introduction, let us convert this and accordingly, the exponential solutions(b$) are classi-
second-order, nonlinear, inhomogeneous, differential equéied by various regions of Fig. fidots mark the location of
tion to two first-order equations by defining new variables:the fixed points given irf12)].
x=u and y=du/de. In 2-d form, (10) is equivalent to Briefly, region | corresponds to a ‘“saddle-node” fixed
(primes will denote derivatives with respect ¢0 point, whose stable and unstable manifdlctsrresponding to

[ll. PHASE-PLANE ANALYSIS
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2 = 4A
17

Fig. 3. Schematic of perihelion precession.

Fig. 1. Eigenvalue classification.

saddle node that appears is not predicted by Newtonian

positive and negativérea) eigenvalues, respectivdhare theory, bl{tsis due to an unst'able orbit'al rad?us originating
given by the eigenvectors dfl5). Region Il represents an from ther ~* term of the effective potential derived fro(8)
“unstable node,” i.e., two positive real eigenvalues with  [se€ alsa33) and the Appendik

—4A>0; region lll gives solutions having .onépositi\{e V§ﬁ=(1+x2/20)(1—x). (20)

real and one complex eigenval(iinstable spirals’), while o - )

regions Il and I’ are the complimentary stable solutions of AS @ result of this instability, there are orbital effects not
regions 1l and IIl, respectively. The “boundary” cases are Present in the Newtonian theory which have been summa-
given by 2= 4A (degenerate nodes and lines of fixed paints 12€d in the literaturdsee, e.g., MTW,p. 637. But what is

and =0, A>0 are “centers” giving periodic orbits in the nice in t_he phase-plane approach is that this r.esult comes out
phase plane. A complete discussion of these cases will not very quickly in the analysis as a secondary fixed pésee

given here, we simply use these results. Refer, for instance,ec' V.
to Strogat? for additional analysis and details.
Evaluating the matriX in (15) at each fixed point of12), IV. PERIHELION PRECESSION

the following classifications are obtained: . L . .
Physically, perihelion precession means that the distance

0 1 of closest approacti.e., the perihelion;helion refers to the

Alx= =7=0;A=—+1-60 sun between two orbiting bodies begins to revolve about the
!Xf (\'1—60' 0) : (i orbit in the same sense as the orbiting badge Fig. 3

Therefore, planetary orbits do not close but are separated by

—

" Saddie Node’” (19 a small correctionA¢, after completing a single orbit. For
0 1 —_— the planet Mercury this is observed to be approximately 574
Al’;;‘—(— V1—60 0)=>7;=0;A= + 1_60; arcsec per century with 532ccounted for by a Newtonian
~ analysis of external planetary perturbations. However, there
Center are 43 not explained from a Newtonian analysis, but pre-

dicted to within experimental error by Einstein’s theory.
To perform the perihelion calculation simply solv&5)

corresponding to a "saddle” and "center-node” fixed point, aboutx; . This first-order system is rewritten here as

respectivelysee Fig. 1 for the placement of these points
previously discussed, the linear stability analysis gives an  §x' =0y, dy'=—w?dx, w=(1—60)" (21)
exponential solution about each fixed point with the phase: . . . .
plane trajectories shown in Fig.[the directions follow from The solutions are centers corresponding to precessing ellip-
(11) and are indicated by arrows tical orbits (see Fig. 2

Physically, trajectories about the center node correspond  §x(¢)=A coswe+B sin we,
to elliptical orbits and we will use this fact in a moment to ) (22)
obtain the value for perihelion precession. However, the oy(¢)=—wA sinwe+wB coswe,

with A andB arbitrary constants. Choosing initial conditions
at the position of perihelion:

6x(0)=uq, 6y(0)=du(0)/de=0, (23

\*\v/‘( (22) becomes
M\ 14’// oX(@)=u(¢@)=Ug COSwe,
Mﬁx\&?:wr Sy(@)=u'(¢)=—wu Sin we, (24)
)fl)(\{k giving a typical “center” solution about the fixed poirt .

y=dx/dp

As previously discussed, in “physical” space the orbit of

A F
X3 xl* my aboutM does not close. However, the phase-plane trajec-
tory given by(24) must close after a single orbit since the
Fig. 2. Linear stability phase plane. system is conservativéignoring radiative effecls There-
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period of the phase space trajectory given(®%: o

event horizon
1

fore, the period of a single orbitp, is defined from the \
0.2

w®=217. (25) i\ ii
Solving for @, and then substituting fow in the limit of ' < separairix
:
t

. . —x=r/
small o gives the following result: o2 BT

®=270 =~27+3m70. (26) 0.
The Newtonian calculation gives only the first termb,

=2, as expected. However, as seer{d6), the Schwarzs-
child solution gives the correction: .
do

Ap=3mo=67(GMmy/cJl)?, (27

which is the usual valuéexpressed in MKS uniisobtained
from proceduresgA) or (B) [compare also witH9) for the
standard expression in the “geometrized” system of Units 1

ellipticaljé

[

e

x=rlr

\

V. AN “EXACT” PHASE PLANE

In Sec. IV a linear stability analysis has been considered x=0 event horizon
about each fixed point. However, this procedure gives only
“local” information on the general relativistic orbits, and is Fig. 4. An “exact” phase plane for=1/9.
in fact one shortcoming of the linear stability analysis.
Therefore, no correspondence can be made with parabolic,
hyperbolic, or orbits near the black hole event horizon usin
Fig. 2 alone. However, since the equations of motion ar%?
integrable due to so many constants of mofioe., (4)—(6)],
an exact phase plane can be constructed and then several 370~4°=¢~7.4x10 3. (32
“global” features of these orbits may be deduced as a result. 1 -
In addition, other qualitative features of the Schwarzschild!© check thatr=3 is a reasonable value in Fig. 4, an upper
orbital dynamics may be derived from this diagréfig. 4  ©ound may be placed om for the existence of stable or
as discussed belowNote: Since the equations are integrableUnstable orbits from ?lther phase-plane fixed point. By in-
no chaos exists here. However, if additional degrees of freeSPection of(12), if o> 3 then no(rea) fixed points exist for
dom are allowed, the possibility for chaos exists; see, e.g@ given value of energy and angular momentum. To trace the
Ref. 8 for a discussion of chaos in relativistic orbital dynam-Physical origin of this value and to understand the topologi-

r for the binary pulsar system discovered by Hulse and
aylor?®

ics). cal structure of Fig. 4 from a more general viewpoint, note
To obtain an exact phase-plane diagram, consider ththat wheny=0 in (30) the effective potential is obtained:
level curves” found by taking the ratio ok’ andy’ from Vgﬁ—lz(xz—xs)IZU—x. (33)

(11), and then integrating to get a conserved quantity:

. 5 s 2 The locations of the stable and unstable orbits are found as
dyldx= (X" =X+ 0)ly=y"=p+x°=x"+20x.  (28)  |gyq by solving’, V=0 for x, which gives identically{12).

The value of the constang is easily found by comparison From(12), no extrema exist for>, establishing an upper

with (8): bound one for stable or unstable orbits. Fer= %, stable

orbits (smallest value 9fand unstable orbitglargest value

_ =2
B=20(E2-1), 29 of) coincide at
o) trjat(28) may be alternatively expressed: rp,=3rsg, (34)
21— (242 3 _ ¥
E*—1=(y"+x"—x)/20—x. (30 providing an inflection point in the plot 0¥2,—1 vs x as

In Fig. 4, the level curves corresponding to different valuesshown in Fig. 5 for several values of(Ref. 10 (Note: The

of E in (30) are shown with the effective potenti@0) (with ~ Standard presentations on this diagram are commonly dis-
o=1). These curves are exact solutions(dl) for various  Pplayed asVi—1 vs 1k; see, e.g., Wald, Ohanian, and
energies and initial conditions, and should be compared witlfRuffini, or MTW! for an alternative parametrization using

the approximate solutions given by the linear stability analy-and J/imyc?). But another critical value ot occurs when

sis of Fig. 2. The vertical dotted line at/r =1, labels the E2=1, To see this, soIvE§—1=0 using(14) to geto=13,

black hole event horizon. as displayed in Fig. 5. Therefore, qualitatively distinct orbits
The value ofo used in(30) has been greatly exaggerated exist based upon the following values @f

to better illustrate the qualitative features of the exact phase

plane. For a more realistic value of consider Mercury’s 0<o<jg o0=3 §<0<g 0=; 0>% (35

orbit—taking the value ofA¢ over a single orbit and then gq, o> 1 there is insufficient angular momentum for, to

using (27): sustain an orbit, therefore the mass simply falls iftand
370~0.104=g~5.4x 1078, (32 correspondingly V¢ has no extrema. The physical signifi-
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Vi A

fixed points coalesce: Xy * saddle x,*and x, * are
§ * complex conjugate
center - ¢_ .....
&~ saddle
w et 0
£ 3
- . . center
bifurcation point at o = u o=0

(x, * and x, *exchange stability)

Separatrices; === ====-= ) o ] )
Fig. 7. Schwarzschild bifurcation diagram.

Fig. 5. Schwarzschild effective potential.

for o<3%) corresponds to a critically unstable hyperbolic or-
bit that separates trajectories spiraling i (above the
separatrix or escaping to infinitybelow the separatrj}®

cance ofo = ¢ is discussed abov@4). The physical meaning
of the other values if35) are understood by analyzing the
separatrix* structure of(30). Essentially, this corresponds to Similarly, as illustrated in Fig. 6 these separatrices are

a limitation placed upon the types of orbits that may exist ummarized according to the following values fas dis-
before an unstable orbit is reached and the kinematic classy. 9 9

fication of the separatrices as distinct unstable orbits. tinct unstable orbits:
In essence, the separatrix gives a graphic representation of 0< o< i=unstable hyperbolic,
the critical relationship between energy and angular momen- 1 )
tum at the unstable orbital radidsee Fig. 6. For a given o=g=unstable parabolic, (36)
angular momentunto), the critical energy of the unstable

orbit is calculated fronk, of (14). For the values of plot- . . . ) . N

ted in Fig. 5, these energies are computed and marked wit IS 0bvious from Fig. 6 that fow in the range;<o<s,

horizontal lines. Substituting these valuedst 1 into(30), ~ Only elliptical orbits are possibléaboutx; ) before the un-

the separatrices corresponding(85) are plotted in Fig. 6.  Stable orbit is reached, while the caset@< 3 allows all
These distinct separatrices divide the phase plane into foihree: hyperbolic, parabolic, and elliptic as discussed above.

regions of motion for & o<1 (=1 is just one special case But these results are consistent with the orbital motion ob-

in Fig. 4). To begin, consider Fig. 4 in the region surround- tained from inspection of the effective potential for different

ing the stable fixed poin&% . The oval trajectory in this values ofo in Fig. 5. These qualitative differences over the

. _— : . range of unstable orbits have not been pointed out in the
region corresponds to an elliptical orbit and was used ear"eﬁterature, but this is not to imply that the Schwarzschild

to find the value for perihelion precession. A unique para- ital dynamics are poorly understood; see, e.g.

bolic orbit occurs as the phase-plane trajectory just touc.heéhandrasekhé‘i’ for an alternative but lengthy analysis.
the y axis and Sep?[ga_tes the hyp_erbollc and e_Illptlc orbits. It should be noted that a physical orbit corresponding to
The hyperbolic orbit is characterized by a trajectory ap- the separatrix can never be achieved in finite proper time. To

proachingM from infinity, but then returning to infinity with do so would im . A
. . . ply that the phase-plane trajectories change
constantdr/de. Therefore, the separatrix of Fig. @pical direction atx} , which is not possible in a deterministic sys-

tem. To see this, consider the proper time equivaleri80f
O<o<l ! ool ’ [this is(7) after rewriting the equation using the definition of
st =/ o in (9) and again using=rg/r]:

<o<g=unstable elliptic.

§ T S (dr/ds)2=E2— 1+ (x3— x2)/20+ X. (37)
0 /" N Separating variables gives an elliptic integral:

RN o N m:if dr/N(E?—1) +x—x220+X%/20, (38)
\ \

which diverges toto asr approaches the unstable orbital

radiusr, of (12) [and(14) is substituted foE2—1], i.e., for
t<o<i [/ o=t a particle approaching the saddle point along the separatrix.
0.2 4' S/ From the separatrix analysis it is apparent that a bifurca-
’, 4 tion occurs at the critical value=4%, i.e., the topological
P N S structure of the phase plane changes as the two fixed points
A < move together, coalesce into a single fixed point, and then
AN .. disappear from the phase plane asis further increased
» | 8 above the critical value 1/6. Therefore, the Schwarzschild
-0.2 . \ orbital dynamics may be interpreted and analyzed as a con-
servative 2d bifurcation phenomena. Specifically, this bifur-
cation is a saddle-center bifurcatirisee Fig. 7, and sum-
Fig. 6. Separatrices for selected valuessof marizes the range of physically possible orbits that may
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occur as the energy and angular momentum are varied for A
o>0. But from a more general viewpoint one should also event horizon
consider negative values af [although it is clear thatr
<0 has no physical interpretation sineemust be positive /\

definite according td9); note also tha=0 in (11) gives 0z S04 o Y

x=rlr

the phase-plane equations for light rays—$44) below].
For o< 0 the two fixed point§Eq. (12)] change stability at
o=0 as shown in Fig. 7. Therefore, anothH&anscritical
bifurcation occurs at-=0 (see, e.g., Strogafzpp. 50-52, e/ d
followed by the saddle-center bifurcation @t . g ’
Finally, an interpretation of the phase-plane trajectories to
the right of the separatrix should be given, namely those
trajectories leaving and then returning through the event ho-
rizon. These trajectories are clearly nonphysical since it is
impossible for any classical particle or light ray to escape
from within the black hole horizon. The origin of these tra-
jectories may be understood as a consequence of the symme- yodx/di
try of (11) under the interchangez— — ¢; y— —Yy, where
¢——¢ Iis due to the time-reversal symmetry of the
Schwarzschild dynamics. As a consequence, this system is
classified aseversibleand gives the symmetry of Fig.(and
Fig. 6) about thex axis, but with the vector field below the
axis reversing directiotf

x=rlr

s

parabolic

x=rlr

Coordinate Time

DIAGRAMS Fig. 8. Proper and coordinate time phase diagrams.

VI. PROPER AND COORDINATE TIME PHASE

In the standard analysis on relativistic orbital dynamics,
the proper time parameter is replaced by the equatorial ang . . .
as the independent variable. One advantage of this replacix€d Point that appears in the coordinate reference frame at
ment is to simplify the algebra of a perturbative analysis, and gl_event horlgomstehe Fig. 8 Its. th di h
is a carryover from the standard techniques applied in the 'C Summarize these results, theé correésponading phase-
Newtonian casésee the Appendix However, as far as the Plan€ equations analogous (dl) in both the proper and

phase-plane analysis is concerned, there are no essential dordinate time reference frames are derived by differentiat-
ficulies analyzing the dynamics using the proper titoe ing (39) and (40), respectively. In each case the results are

coordinate timg as independent variables. In fact, there is91Ven by

additional information available which also gives a nontrivial  gx/dr=y=+x2[E2—(1+x2/20)A]"2

introduction to dynamical invariance. - (42)
To demonstrate the invariance of the effective potential — dy/dr=x37x3—6x2+ 10xo + 80 (E2—1)]/40,

between the proper and coordinate time reference framegmd

start with(7) to obtain the proper time resuliote: Usinge

rather thanr eliminates thex* leading term appearing be- dx/dt=y=+x2AYIE2— (1+x2/20) A]MYE,
low):
) . X dy/dt=x3A[9x*— 153+ 2x%(3+ 7o) (43)
(rs/c)?=x4E?—(1+x%20)A]. (39 R R
. _ , . , +2x0(6E?—11)— 80 (E?—1)]/40.
The corresponding coordinate time expression is obtained ) )
using:x= (dx/dt)t, in combination with(5) which gives Although (42) and (43) are more complicated algebraically

5 4 oins 5 than(11), the simultaneous solution &f=y=0 for E2 andx
(rs/c)*(dx/dt)*=x*(A/E)E"— (1+x%/20)A]. (40  in each case reduces t@2) and (14) identically, but with
Solving (40) for E2 gives the coordinate frame expression nother fixed pointx=0, at infinity and ak=1 in the case
for the total energy: of (43). However, the fixed point at |nf|n|ty.eX|sts for the_
4 5 5 Newtonian case as well, and is discussed in the Appendix.
-, X(1+Xx20)A The fixed point at the event horizon is obviously coordinate
~x*A%—(rg/c)?(dx/dt)?” (42) dependent and does not correspond to any extrema of the
) ) ) ) effective potential. Nevertheless, this fixed point has physical
By inspection of(41), asdx/dt—0, the effective potential consequences for observers in the coordinate reference
(20) is recovered, i.e.V3—V.2=V2, is invariant between frame—explaining the slowing down of objects and redshift
the proper and coordinate time reference frames. Thereforef signals approaching the event horizon.
the dynamical structure is invariant, or alternatively stated, As discussed beloWl4), there are additional nonphysical
the extrema ofVZ, are identical in either reference frame. roots obtained when solving=y=0, only forx andy. The
However, the phase diagrams in each case are not identic@®nphysical nature of these fixed points is due to the fact that
due to the existence of an additional “frame-dependent”there must be a constraint placed ugomwhen7ort is used
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as the independent variable. Solving simultaneously the ex- /6,
pressions fory given in (42) or (43) gives the proper con- event horizon
straint onE and as a result forces these fixed points to coin-
cide with the extrema of the effective potential. This is also a
feature of the Newtonian dynamics when usings the in-

dependent variable. 0.5

VII. LIGHT RAYS

The analysis of photon orbits in the Schwarzschild space-
time is a straightforward application of the techniques dis- dx
cussed for timelike orbits. For light rayd=0, which in
turn implies that botte andJ are divergent fron{5) and(6),
although their ratio remains finite. As a resutt,~»0, and the
phase-plane equations for light rays follow as a special case
of (11):

x'=y=*[1b%>-x*(1-x)]*?

separatrix

(44)

\\

hyperbolic N
event horizon

y, - g X2— X trajectories
where 1h*=20E? is a constant expressing_the dimension-
less impact parametel, as the finite ratio ok, J, andrs.
The simultaneous solution of =y’=0 for 1b? and x
results in two fixed points and the corresponding values ofi/b?=0, these orbits just graze the event horizon from the
the impact parameter: inside and simultaneousk§n an unrelated trajectoyyreach
x,=% 1b2= A {x2=0;1/02=0}, (45) the center 2node fixed poi.nt qf the effegtive poten@e Fig.

9). For 1b°<0, b loses its interpretation as an impact pa-
giving the standard results for the unstable orbital radiys, rameter since the trajectories in this case originate from the
and the impact parameter at which this instability ocCUrssingularity atr=0 and lie within the horizon. For f?

The fixed pointx,, is a center nodéat infinity) about which < £ " the trajectories are confined to within the separatrix and
the hyperbolic orbits “precess{see Ref. 12 for a comment correspond to the light rays arriving from infinity, reaching a
on the timelike caseand gives the standard result for light trming point[given by the appropriate root of the first equa-
bending. Therefore, the perihelion precession of timelike ortjgn in (44)], and then return to infinity as discussed below
bits and light bending are actually special cases of one angg) For 1h2> £, a photon arrives from infinityabove the
other: In the timelike case this center node fixed point is a%eparatrix and then falls through the event horizon. The cor-

finite r and allows “real” circular orbits; but for light rays egnonding time-reversed trajectories are given below the
this fixed point moves to infinity and gives the precessin eparatrix.

hyperbolic orbits noted above. However, a phase-plane cal- The rajectories to the right of the unstable orbital radius
culation of light bending analogous to that discussed in Segy Fig. 9 are also interpreted as time-reversed paths that
Il does not work here. This is due to the fact that a linéareach a maximum distance from the event horizon and then
stability analysis(15) “kills” the necessary terms; namely, ot to the singularity. But another interpretation is pos-
the impact parameter disappears from the matria similar  gjpje ysing simple energy considerations: A photon and its
result occurs when calculating the period of a simple pendugime_reversed counterpart originate from a point of maxi-
lum for large angles using this technique N mum distance from the horizon, and then both proceed si-
The phase-plane level curves for light rays in Fig. 9 cor-mjraneously from this point into the horizon. The analogous
respond to different values of lﬁ- These are shown t0- jnterpretation is also possible in the timelike case for massive
gether with the locations of the fixed points and photon efparticles(see Fig. 4 and the discussion in the final paragraph
fective potential:x*(1—x). The most striking difference of Sec. \j. However, these are classical interpretations and

between the photon and timelike phase-plane dynamicshould not be identified with quantum phenomena.
(comparing Figs. 9 and)4s that the center node fixed point

moves to the origin asr—?o (as discu_sse_d abo)zf?As a  \Il. DISCUSSION
result, circular photon orbits do not exist in any “dynami-
cal” sense, but become circular in geometry as the orbits We have considered an alternative procedure for calculat-
approach the separatrix. To see this use the definitignimf  ing the value of perihelion precession and have summarized
the first equation of(44), and then separating variables the Schwarzschild orbital dynamics in the modern setting of
shows thate—> as x—x; and 1b?— 4 [this result is phase-plane analysis. Contrasting these calculations with the
analogous to the proper time divergence pointed o(88y].  standard textbook procedures, the main results are obtained
Therefore, the separatrix corresponds to the unstable “phosery quickly while minimizing the algebra, but placing more
ton sphere” that is commonly discussed in the literaisee, emphasis on the physics. For example, by calculating the
e.g., Ohanian and Ruffidip. 410. value for perihelion precession using a perturbative solution,
The physical interpretation of the various phase-plane rea departure is made from an analysis based on physical con-
gions of Fig. 9 is similar to that of Fig. 4, but there are cepts to an exercise in algebra. However, in the phase-plane
important differences. For light rays with impact parameterapproach, the physical concepts are given greater emphasis

Fig. 9. Null geodesics phase plane.
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and made more accessible to beginning students. This is dilean usinge. Furthermore, there are results shared by the
to the fact that the phase-plane technique itself is based eselativistic case(discussed in Sec. Yithat are clarified in
sentially on the “energy-method” diagrams taught in intro- this analysis.

ductory mechanics courses. The analysis presented in Sec.To begin, consider the Newtonian limit of the equations
VI demonstrates that important topics such as dynamical inelerived in Sec. Il. The effective potenti@lhit rest energyis
variance are easily handled using the phase-plane techniquefven in (20), and is defined a¥2; which gives the proper
T?fsr? prOV|dI<|a nontr(lj\(;?l alnd physmall;l/l mfterebstm_g examplee, tonian limit for Vq (to within an additive constanin
\c/jverlﬁs normally are difficult conceptually for beginning stu- the limit of larger. As a result, the Newtonian limit a0)

In addition, the traditional analysis of the effective poten-IS given by
tial could be augmented with discussion on the “exact” v/ —11—x+(x2—x3)/20]Y2~1—x/2+x%40,  (46)
Schwarzschild phase plane, or more specifically its separatrix
structure. Essentially, the separatrix gives a geometric repravhich differs from the standard Newtonian form by an addi-
sentation of the critical relationship occurring between en+ive constani{corresponding to the rest mass energymgj.
ergy and angular momentum, and as such, divides the pha3te standard Newtonian effective potential energy is chosen
plane into physically distinct regions of motion. By varying a to be zero at infinity, giving the usual expression:
dimensionless parameter involving the angular momentum, a .
saddle-center bifurcation occurs as the two fixed points coa-  Ve=X*/40—X/2, (47)
lesce and disappear—altering the phase-plane topology. Far C L
the case of light rays the separatrix corresponds physically tgompareddto the rr]elatmstlc limit where the errl]grgy dec‘it' infinity
an unstable “photon sphere” as discussed earlier. As a Spec_orreslponf SI tlo the rest mass (_aner?y. BUtrt_] Is additive con-
cial case of11), the photon orbits also provide a transcritical Stant is of litle consequence insofar as the dynamics are

. . f e . - concerned, and so we ado@t?) for the remaining discus-
E);f:u(r)catlon point of the dynamics—exchanging stability atSion [Note: From a certain viewpoirtsee Kompaneyefsp.

. L . : . 44) one may regard this difference as a choice of “gauge:”
For additional applications it would be interesting to ana-. he © i b takey . — nfini il
lyze solutions other than the Schwarzschild case, e.g., thef the “Newtonian gauge™ take¥=0 at infinity, while

Reissner—Nordstrom(a charged, spherically symmetric the special “relativistic gauge” i%/¢;=1].

black hole, the Kerr solution(a rotating black hole or the The corresponding Newtonian expression (88) is de-
Kerr—Newman solutiotta charged, rotating black holécur-  rived using the standard Lagrangian and Hamiltonian results:
ther applications would include an analysis of cosmological 202 marlt O

solutions and nonconservative orbital dynantics., systems (rs/e)*x*=2x"[E— Ve, (48)
emitting gravitational radiation and also solutions stem-
ming from alternative theories of general relativity. Analysis
of these topics will appear elsewhere.

In summary, constructing an exact phase plane for an ar: o
bitrary solution will only be possible if the fixed point alge- cgeck,(48) reduces tdafter substituting2), (47), and then
braic equationx’ =y’ =0, is of fourth order or lesgand in 91
addition if a sufficient number of first integrals exist®th- (du/dt)?= —u*(I/m)?[u?— 2ugu—b?], (49
erwise, finding roots will be difficult if not impossible. How-
ever, a numerical approach could always be taken, an@hereu=1/r andu,=GMm?J? gives the standard radius
would be motivated by the interesting pictures that resuliof a circular orbit. The Constan]bﬁz 1/b%=2mE/J? ex-

from combining the fixed point structure of general relativity presses the impact parametdor a particle approaching

state space into a diagram that includes the event horizon.from infinity) in terms ofE andJ. The zeroes of49) give the
standard turning points of the effective potentiside from
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— _y3r2 2_ _ 2

APPENDIX: NEWTONIAN PHASE-PLANE y=—xcU(3x"~5ox—8ok)/20rs,
ANALYSIS Solving simultaneouslyx=y=0 for E? andx then gives the

As discussed earlier in Sec. I, the standard analysis of th@v0 fixed points:

Newtonian qrbital dynamics is based on th_e c_hange of inde- {X1=0';IAE= —ald}, %,=0. (51)
pendent variablet— ¢, for the purpose of finding a closed

form solution describing the orbital geometry. But a phase-The first gives the standard results: a center node correspond-
plane analysis of the differential equations using time as thég to a Newtonian circular orbit with radiug and energy
independent variable is no more complicated in principlegiven by
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elliptical

Fig. 10. Newtonian phase-plane diagram withs the independent variable
(o=1).

Xl=0'2>r1=r5/0'=J2/G|\/|m2,

E= — gld—E= —m(GMmJ)?/2. (52

The second fixed point at infinity simply expresses the fact,
that it takes an infinite amount of time for the orbiting par-
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parabolic and hyperbolic orbijts-a fixed point that is shared
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The other aspect of science, the one that |

THE AWE FACTOR

factor.” | ask myself, what is the appeal of religion, what is the appeal of UFOs, what is
appeal of von Daiken or Velikovsky, all that nonsense? | suspect that a part of it is the kin
awesome romance that science ought to be the master of. Don’t let us allow religion to walk
with the awe factor. Science has orders of magnitude more to offer in this field. Black holgs are
incomparably more wondrous, more romantic, than anything you read in the pseudosci
literature, in New Age drivel, in the “occult,” in the Bible. Let’s not sell science short.
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