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I. INTRODUCTION

Nonlinear oscillator equations play an important role in
physics and engineering and have attracted much interest.
Explicit analytical solutions of nonlinear oscillator equations
are few, and either numerical solutions or approximate ana-
lytical techniques are frequently used.1 Many solution meth-
ods for nonlinear oscillator equations are based on different
perturbation techniques and are algebraically cumbersome.

Another powerful and flexible technique for finding ap-
proximate solutions to many different equations in physics is
variational methods such as Ritz optimization,2 which often
produces analytically simple and accurate results. The idea
of the direct variational approach is to reformulate the origi-
nal equation as a variational problem and then to minimize
the corresponding variational functional within a set of trial
functions. This idea can be made more specific as follows:
Consider the equation L#y!t"$=0, with appropriate boundary
conditions on the interval #a ,b$. Assume that this equation
can be rewritten as the variational problem !J#y$=0, where
the functional J#y$ is determined by the Lagrangian L#y!t"$.
That is,

!J#y$ = %
a

b !L

!y
!ydt = 0, with

!L

!y
= L#y!t"$ . !1"

!L /!y denotes the variational derivative, that is, the con-
comitant Euler–Lagrange variational equation is equivalent
to L#y!t"$=0. Instead of allowing a general variation !y, the
Ritz optimization procedure seeks an approximate solution
within a restricted set of functions spanned by a function
with a specified time dependence but with a degree of flex-
ibility in form obtained by allowing the ansatz function to
depend on certain parameters. That is, y!t"
=yT!t ;a1 ,a2 , . . . ,an", where yT satisfies the boundary condi-
tions for all parameters aj with j=1,2 , . . . ,n. If this ansatz is
inserted into the variational functional, the variational prob-
lem reduces to an ordinary optimization problem in the n
variables an for the function J#yT$&J!a1 ,a2 , . . . ,an". The
corresponding optimization equations !J /!aj =0 determine
the optimal choice of the parameters and the corresponding
approximation of the solution.

A related but more general approximation method is the
method of weighted residuals, which in its simplest form is
called the Galerkin method.2–4 The first part of this method is
the same as in the Ritz optimization procedure. An approxi-
mate solution is sought in the form of an ansatz function of
specified time dependence but with flexibility allowed by
including a number of parameters, that is, y!t"
=yT!t ;a1 ,a2 , . . . ,an", where yT satisfies the boundary condi-
tions for all parameters aj. Although this ansatz function
does not usually satisfy the equation L#y$=0 and instead
gives rise to a residual R#yT!t"$&L#yT$"0, this residual can
be made to vanish in a weighted averaged sense by multiply-
ing it by weight functions wj!t" and integrating over the in-
terval. That is,

%
a

b

L#yT!t;a1,a2, . . . ,an"$wj!t"dt = 0, !j = 1,2, . . . ,n" ,

!2"

where Eq. !2" provides n relations for determining the n
unknown parameters aj.

If the original equation allows a variational reformulation
and the weight functions are taken as wj =!yT /!aj, the corre-
sponding variational and Galerkin equations coincide.3,4

However, the Galerkin approach is more flexible than the
variational approach because it is applicable to a broader
range of problems !for example, where a variational refor-
mulation of the original equation is not possible" although at
the loss of the optimization feature.

The purpose of this paper is to give a pedagogical demon-
stration of the application of the Galerkin method to some
well known nonlinear oscillator equations and to illustrate
the power and flexibility of this method.

II. THE NONLINEAR PENDULUM

The most well known nonlinear oscillator equation is the
simple pendulum described by

ÿ + "0
2 sin y = 0, y!0" = A, ẏ!0" = 0, !3"

where y corresponds to the angle of oscillation and "0 is a
constant determined by the length of the pendulum L and the
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acceleration of gravity g according to "0
2=g /L. In most in-

vestigations Eq. !3" is simplified by considering only small
oscillations around the stationary solution y=0, which im-
plies that the equation can be linearized and reduced to the
linear equation ÿ+"0

2y=0 with the simple solution: y!t"
=A cos!"0t". This solution has the linear property that the
oscillation frequency is independent of the oscillation ampli-
tude, a property that does not hold for higher oscillation am-
plitudes where the oscillation frequency depends on ampli-
tude !a typically nonlinear feature".

In spite of its seeming simplicity, the problem of finding
solutions for general initial amplitudes, A, has occupied
many eminent mathematical scientists, with the first one be-
ing Bernoulli in 1749.5 The problem is still often studied as
an example of the application of different solution
techniques.5–10

There is an exact analytical solution of Eq. !3", although in
the not very explicit form of an incomplete elliptic function.
The most important information about the pendulum is the
relation between the oscillation time, T, and the amplitude,
A, which is given by8

T

T0
=

2K!sin!A/2""
#

, !4"

where K!k" denotes the complete elliptic integral of the first
kind and T0=2# /"0 is the period in the limit of small am-
plitudes. Many ingenious methods have been suggested for
finding approximate solutions of Eq. !3" and for finding
simple analytical approximations for the frequency-
amplitude relation, given exactly by Eq. !4". An early ex-
ample is the approximation proposed by Bernoulli given by
T /T0=1+A2 /16. For some recent papers on different
approximation procedures to the nonlinear pendulum, see
Refs. 5–10.

As an illustration of the power of the Galerkin method, it
is interesting to reconsider this nonlinear oscillator equation.
A simple trial function is yT=A cos!"t", and the problem is
to determine the relation between the amplitude of the oscil-
lations, A, and the nonlinear frequency "=2# /T. A natural
choice for the weight function is w!t"=cos!"t". The condi-
tion of vanishing residual !integrated over a quarter period"
implies that

%
0

T/4
!ÿ + "0

2 sin y"w!t"dt = 0. !5"

If we use the trial function for y!t" and the proposed weight
function, the oscillation time is found to be

T

T0
=' A

2J1!A"
, !6"

where J1!x" denotes the Bessel function of order one, and we
have used the fact that11

%
0

#/2
sin!A cos x"cos xdx =

#

2
J1!A" . !7"

Equation !6" reduces to T /T0→1 as A→0, as it should. For
a string pendulum the maximum allowable value is A=# /2
and for this amplitude the oscillation time is T /T0=1.178,
compared to the result T /T0(1.180 from Eq. !4" !an error of
only 0.2%". A rod pendulum would allow initial amplitudes

up to A=# where the exact oscillation time would become
infinite. The approximation given by Eq. !6" has qualitatively
the same behavior, but reaches infinity only at a higher value
of A, corresponding to the first zero of J1!A", that is, A
(3.83.

The expression for the oscillation time given by Eq. !6"
was also obtained in Ref. 12 using the method of harmonic
balance. This solution procedure first expands the nonlinear-
ity sin y in powers of y and then the function y!t" in a Fourier
series containing odd multiples of cos!"t". After identifying
powers of cos!"t", an expansion of T /T0 in terms of A was
found and then a posteriori recognized as the expansion in-
volving the first order Bessel function. In the Galerkin ap-
proach, the nonlinear relation linking the period and the am-
plitude of the oscillations is obtained with only a few
calculations and using the explicit expression for the integral
in Eq. !7".

In a variational approach to the nonlinear pendulum, the
nonlinear oscillator equation is rewritten as the variational
problem

!%
0

"t=#/2
L!y, ẏ"dt = 0, !8"

where

L = 1
2 ẏ2 + "0

2 cos y . !9"

In the direct variational approach, the functional is mini-
mized within a smaller set of functions. A natural choice of
trial function in this case is again yT!t"=A cos!"t", where the
frequency " can be considered as fixed and the optimal
choice of the corresponding amplitude, A, is to be found. We
substitute this trial function into the variational integral and
obtain the integrated or “reduced” Lagrangian

)L* = %
0

"t=#/2
L!yT, ẏT"dt =

"#A2

8
+

"0
2

"

#

2
J0!A" , !10"

where J0!x" denotes the zero order Bessel function. Variation
with respect to the single parameter A yields #using
dJ0!A" /dA=−J1!A"$

!)L*
!A

=
"#A

4
−

"0
2

"

#

2
J1!A" = 0, !11"

which implies

+ T

T0
,2

=
A

2J1!A"
. !12"

Equation !12" is the same result as before, as it should be
because the weight function in the Galerkin analysis is
w!t"=cos!"t"=!yT /!A.

III. OSCILLATORS WITH POWER LAW
NONLINEARITIES

Recently, a series of papers13–19 has compared different
techniques for finding approximate analytical solutions of
nonlinear oscillator equations of the form

ÿ + f!y" = 0, y!0" = A, ẏ!0" = 0, !13"

where f!y" is an odd nonlinear function. The nonlinear pen-
dulum equation is a special case of this form. Particular at-
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tention has been given to nonlinear power law functions of
the form f!y"=sign!y"-y-p, for example, p=1 /3,16,19

p=4 /3,17,19 and p=−1.12,18,19 Equations of the form of Eq.
!13" appear in a broad range of applications. In addition to
the applications in mechanics and plasma physics mentioned
in Refs. 1, 12, and 16–19, equivalent equations also appear
in diffusion and heat conduction problems involving concen-
tration dependent diffusion constants and temperature depen-
dent conductivities, respectively20,21 !see the Appendix".

When analyzing equations of the form in Eq. !13", it is
often convenient to reformulate them as an eigenvalue prob-
lem by suitable normalization to dimensionless variables !see
Ref. 1 and the Appendix". A suitable normalization in the
present case is to rescale the amplitude y /A→y and time
t / !T /4"→ t, where T denotes the period. This choice of a
new time variable implies that the first quarter period of the
oscillations extends between t=0 and t=1. Equation !13" can
then be rewritten as

ÿ + $ sign!y"-y-p = 0, !14"

where $=Ap−1!T /4"2. The boundary conditions are y!0"=1,
ẏ!0"=0, and y!1"=0. This reformulation has the advantage
that it directly determines the nonlinear scaling of the oscil-
lation time with amplitude once the eigenvalue has been de-
termined !T=4'$A−!p−1"/2%A−!p−1"/2".

Of special interest is the case p=−1 for which Eq. !13"
becomes

ÿ +
$

y
= 0, !15"

where $= #T / !4A"$2, which implies that T=4'$A. In spite of
the singular nonlinearity, Eq. !15" still has periodic
solutions.18 As for the nonlinear pendulum, it can also be
integrated to give the implicit solution

t = %
y

A dy
'2 ln!A/y"

= A'#/2 erf!'ln!A/y"" , !16"

where erf!x" denotes the error function. This solution is not
very explicit and several detailed investigations of varying
complexity have been made of Eq. !13" to obtain good ap-
proximate solutions.12,18,19 These investigations have been
based on various approximation methods, for example, the
method of harmonic balance,12,13,15–18 and the direct varia-
tional method of Ritz optimization.19 Particular emphasis has
been given to the determination of the nonlinear relation be-
tween the oscillator frequency and the amplitude.

We reconsider Eq. !15" as a further illustration of the
power and usefulness of the method of weighted residuals in
the context of the Galerkin method. For the simplest appli-
cation of the method of weighted residuals, it is convenient
to rewrite Eq. !15" in the form used by several authors,12,18

L & yÿ + $ = 0. !17"

In view of the previous investigations, a simple trial function
satisfying the normalized boundary conditions is yT
=cos!#t /2". For simplicity, we choose the same weight func-
tion w!t"=cos!#t /2". We use this ansatz in Eq. !17" and
obtain

$ = −
.0

1yT!t"ÿT!t"w!t"dt

.0
1w!t"dt

=
#2

4
.0

#/2cos3 tdt

.0
#/2cos tdt

=
#2

6
, !18"

which implies the relation T /A= !'8 /3"#(5.13, in compari-
son to the exact relation obtained from the implicit solution
given by Eq. !16" of T /A='8#(5.01; the error is only
2.3%.

It is instructive to analyze this problem using the varia-
tional approach. The Lagrangian corresponding to Eq. !13"
for f!y"=1 /y is

L = 1
2 ẏ2 − ln-y- . !19"

As in the previous example, the frequency, ", can be consid-
ered as given and the corresponding amplitude, A, is to be
determined. A suitable trial function is yT=A cos!"t". If we
substitute this function into the variational integral and inte-
grate over a quarter period, we obtain the reduced Lagrang-
ian

)L* =
#"A2

8
−

# ln A

2"
+

#

2
ln 2. !20"

Variation with respect to A yields the relation "A='2 or
T /A=#'2(4.44, which is an error of #11.4%. We see that
in this case the Galerkin approach turns out to give a more
accurate result than the variational approach despite the fact
that the same trial function was used in both cases. The ex-
planation is the fortuitous reformulation of the nonlinear os-
cillator equation from the original form given by Eq. !15"
into that of Eq. !17", which is not in the form of the varia-
tional equation corresponding to the Lagrangian !although it
is equivalent".

The cosine function may seem a natural choice of trial
function in view of its importance for linear oscillators and
of previous investigations that have all been based on this
function. However, it is not obvious that it is the best choice
of trial function in cases involving strongly nonlinear oscil-
lations. An even simpler trial function satisfying the bound-
ary conditions is the parabola yT!t"=1− t2. If we use this
function and the weight function w!t"=yT!t", the Galerkin
approach gives $=8 /5, which implies T /A(5.06, an error
of only 0.94%.

IV. MORE FLEXIBLE TRIAL FUNCTIONS

The Galerkin approach is easily generalized to more flex-
ible trial functions, albeit typically at the expense of more
complicated calculations. In view of the analysis based on
the harmonic balance approach, we reconsider Eq. !17" using
the trial function yT=a1 cos!#t /2"+a2 cos!3#t /2" and
weight functions w1=cos!#t /2" and w2=cos!3#t /2", where
a1+a2=1 to satisfy the initial condition. This relation to-
gether with the two Galerkin equations constitute three equa-
tions for determining a1, a2, and $. The subsequent calcula-
tions are straightforward but tedious, and the result is a1
(1.0676, a2(−0.0676, and $(1.6896, which implies
T /A(5.1994, that is, an error of 3.7%. This error is larger
than that corresponding to the approximation using only the
first term! This result emphasizes that the Galerkin approach
does not necessarily improve with increasing number of
terms. The Galerkin result can be compared to the result of
the harmonic balance approach, which to second order gives
a1=10 /9(1.11, a2=−1 /9(−0.11, and the corresponding
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error for the T/A relation of 1.6%.18 We note that a varia-
tional analysis based on this trial function is not convenient
because it leads to complicated integrals that can only be
evaluated numerically.

To avoid excessive calculations, it is often advantageous
to use trial functions of compact form rather than formal
expansions. An example of a more flexible choice of trial
function is yT!t"=cos&!#t /2", where & is a parameter to be
determined. This choice allows for a more general form than
the cos!#t /2" variation used previously. Because we now
have an extra parameter to determine, two weight functions
must be chosen. The choice of weight functions in this case
is not obvious, but as in the previous application we choose
one of the weight functions as w1!t"=yT!t"=cos&!#t /2". This
weight function is very small around t=1 and consequently
suppresses any residual errors in this region. For this reason
!and for simplicity", we choose as the second weight func-
tion the more “neutral” function, w2!t"=1. The two equations
for the eigenvalue $ obtained using these weight functions
are

$ = −
.0

1yT!t;&"ÿT!t;&"w1!t"dt

.0
1w1!t"dt

=
#2&

6
'!&/2 + 1"

'!!& + 1"/2"
'!!3& − 1"/2"

'!3&/2"
!21a"

$ = −
.0

1yT!t;&"ÿT!t;&"w2!t"dt

.0
1w2!t"dt

=
#2&

8'#

'!& − 1/2"
'!&"

, !21b"

where '!x" denotes the Gamma function.11 These equations
imply the transcendental equation for &,

F!&" &
4'#

3
'!&"

'!& − 1/2"
'!&/2 + 1"

'!!& + 1"/2"
'!!3& − 1"/2"

'!3&/2"
= 1.

!22"

After finding the value of &, the eigenvalue is given by Eq.
!21b". Equation !22" is not possible to solve analytically but
can be solved numerically with the result that &(0.75,
which gives the eigenvalue $(1.53 and the relation T /A
(4.95, an error of only 1.2%.

A corresponding analysis can also be made using the trial
function yT!t ,&"= !1− t2"& and the weight functions w1!t"
=yT!t ,&" and w2!t"=1. The result is qualitatively similar,

$ = 4&
'!& + 3/2"'!3& − 1"

'!&"'!3& + 1/2"
= '#&2 '!2& − 1"

'!2& + 1/2"
. !23"

The solution of this system of equations yields &(0.82, $
(1.56, and T /A(4.99, which constitutes an error of only
0.4%. A comparison between the different approximate solu-
tions and the exact solution given by Eq. !16" is shown in
Fig. 1.

A drawback of the latter two trial functions is that they
give rise to transcendental equations for the parameter & that
can only be solved numerically. However, they give simple
and explicit solutions once & has been determined. This
property can be an advantage if the solution is to be used for
subsequent calculations.

V. DISCUSSION

The Galerkin method is a convenient and flexible ap-
proach for obtaining approximate solutions of many impor-
tant equations. When applied to nonlinear oscillator prob-
lems, it provides simple, compact, and accurate approximate
solutions. The Galerkin method is less systematic in its itera-
tion procedure than, for example, the harmonic balance
method, which has been applied to different nonlinear oscil-
lator equations. However, as illustrated by our examples, the
accuracy obtained is often surprisingly good and sufficient
for most practical purposes.

APPENDIX: THE NONLINEAR DIFFUSION
EQUATION

To illustrate the physical relevance of Eq. !13" for power
law nonlinearities, we consider the well known one-
dimensional diffusion equation given by

!n

!t
=

!

!x
+D

!n

!x
, , !A1"

where n denotes the diffusing quantity and D the diffusion
constant. In many problems the diffusion coefficient, D, de-
pends nonlinearly on n and can be approximated by the
power law form D=D0!n /n0"&, where n0 is a suitable nor-
malization density, D0 is the diffusion coefficient corre-
sponding to this density, and & is a parameter.20,21 The cor-
responding diffusion equation becomes

!n

!t
=

!

!x
+D0+ n

n0
,&!n

!x
, . !A2"

For the boundary conditions n!t ,L"=0, n!0,0"=N0, and, us-
ing separation of variables, n!t ,x" /n0=T!t"X!x", Eq. !A1"
can be separated into two independent equations. The equa-
tion for the time dependent part can easily be solved to yield
T!t"= !1+&t /("−1/&, where −1 /( denotes the separation con-
stant. #Without loss of generality we have assumed T!0"=1.$

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

t

y

Fig. 1. Comparison between exact !outer solid line" and approximate solu-
tions for the first quarter period 0) t)1 of the oscillation. Trial functions:
yT=cos!#t /2" !dot-dashed line", yT=1− t2 !solid line", yT=cos&!#t /2" !dot-
ted line", and yT= !1− t2"& !dashed line"; the corresponding values of & de-
termined by the Galerkin procedure have been used.
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The equation for X!x" is more complicated, and it is conve-
nient to introduce the function R!x"=X&+1, which makes it
possible to write the equation for R in the form

d2R

dx2 + $Rp = 0, !A3"

where $=L2Rp−1!0" /(pD0, R!0"=1, and R!1"=0. The coor-
dinate x has been normalized according to x /L→x, the am-
plitude R to R /R!0"→R, and p=1 / !1+&". Then the equation
!considered on the interval #0,1$ where X can be assumed
positive" is equivalent to Eq. !14".
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Superb Calculation of the Pressure in a Fluid
Bob Panoff, Shodor Foundation

Tune: Supercalifragilisticexpialidocious

Bernoulli knew he had a rule he used for wings in air
For fluid incompressible he’d never have a scare.
The density of energy’s the same at every spot
A caveat is cavitation in which case it’s not!

Oh, Superb calculation of the pressure in a fluid
Is simple so that anyone with any sense can do it.
We all deserve a force conserved among the objects paired.
Just add to pressure rho gee aitch then add half rho vee squared

A water tower tower’s o’er a town so water goes
Through every pipe, and when you turn the faucet on it flows.
The pressure head is now instead a steady stream, you see,
The pipe’s diameter determines stream velocity.

The sum at every point’s a constant, check it if you care
Each term can change within a range for water or for air.
The key’s to keep the units straight and don’t have any gap
Or else your fluid starts to leak and then you’ll just get Oh... .
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