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We show that any group-theoretic differentiable operation in an open interval of real numbers is
isomorphic to the usual addition of real numbers. Given the composition law, it is possible to
establish the transformation relation. Alternatively, given a transformation, it is possible to obtain
the composition relation in terms of the new variable. We show that some well known cases such
as entropy and the relativistic addition of parallel velocities are included in this general framework.
The composition rules for a wide variety of phenomena ranging from electrical circuits to
thermodynamic systems are treated in a unified way.VC 2011 American Association of Physics Teachers.

[DOI: 10.1119/1.3610179]

I. INTRODUCTION

There are many physical quantities that obey group prop-
erties. In many cases, it is possible to establish that a certain
physical quantity is associative or commutative even if the
specific composition relation is not known. Abrupt temporal
or spatial changes in physical variables are in most cases not
possible without violating fundamental physical principles
such as relativity or requiring unattainable conditions such as
infinite potentials.1 Therefore, many physical quantities are
time and space differentiable, and thus differentiable with
respect to the variables of the composition rule.

Composition in electrical circuits consists in the addition of
electrical components such as resistors, capacitors, or induc-
tances either in series or parallel. In thermodynamics compo-
sition consists in merging several systems. In mechanics, the
composition of masses or velocities between different refer-
ence frames is common. In the framework that we will dis-
cuss, the variable to be composed needs to be a real scalar
quantity. Care should be taken with vector quantities, such as
velocities, either by doing an analysis in one dimension or
ensuring that each component is treated independently.

A connected non-compact one-dimensional Lie group is
isomorphic toR with the usual addition operation. The proof
of this theorem is usually given within the Lie algebra for-
malism. However, it is possible as will be shown here, to
give a self-contained proof of this theorem by invoking only
basic undergraduate calculus. The proof provides the relation
between transformations and composition rules. The theorem
can then be linked to the composition of physical quantities
in one dimension.

In Sec. II, we show that any differentiable group law in an
open interval of real numbers is isomorphic to the additive
group of real numbers. An explicit expression for the trans-
formation in terms of the composition rule will be given.
Two broad problems, described in Secs. III and IV, can be
treated with the present formalism.

II. GROUP LAWS IN OPEN INTERVALS

Suppose that I ¼ ða; bÞ $ R in an open interval with a
group operation, that is, with a function F: I % I ! I, such
that

(1) If x; y; z 2 I, then FðFðx; yÞ; zÞ ¼ Fðx;Fðy; zÞÞ.
(2) There is an element e 2 I such that Fðx; eÞ ¼ x

¼ Fðe; xÞ, for all x 2 I. The element e is the identity of
the group I.

(3) If x 2 I, there is an element iðxÞ 2 I such that Fðx; iðxÞÞ
¼ e ¼ FðiðxÞ; xÞ. The element i(x) is the inverse of the
element x.

The composition rule is often written as a binary operation
Fðx; yÞ ¼ x& y in order to view it as a generalization of the
usual sum operation. However, it is useful to write the opera-
tion as a function Fðx; yÞ of two real variables to be able to
write explicitly its derivatives. The main result in this con-
text is the following proposition:
If F: I % I ! I $ R is a group law in an open interval I

and has continuous partial derivatives, there exists a differen-
tiable isomorphism k: I ! ðR;þÞ; that is, k is bijective and
for all x; y 2 I,

kðx& yÞ ¼ kðxÞ þ kðyÞ: (1)

To find an explicit expression for k, suppose for a moment
that it exists and has the required properties. In particular,
kðx& yÞ ¼ kðxÞ þ kðyÞ can be written in terms of F as

kðFðx; yÞÞ ¼ kðxÞ þ kðyÞ: (2)

Because we have assumed that k is differentiable, we can
differentiate both sides with respect to x and obtain

k0ðFðx; yÞÞ @Fðx; yÞ
@x

¼ k0ðxÞ: (3)

We set x¼ e (the identity of I) and find

k0ðyÞF1ðe; yÞ ¼ k0ðeÞ; (4)

because Fðe; yÞ ¼ y. We let F1 denote the partial derivative
with respect to the first variable F1ðe; yÞ ( @Fðx; yÞ=@xjx¼e.
We then solve for k0ðyÞ and integrate to find

kðyÞ ¼
ðy

e

k0ðeÞ
F1ðe; sÞ

ds: (5)
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Two points need to be verified. First, we must show that
F1ðe; sÞ is never zero for all s 2 I. The second point is that
we did not include an additive constant of integration,
because we want k to be a homomorphism. Therefore, k
must map the identity e of I to the identity 0 of R, that is,
kðeÞ ¼ 0 and Eq. (5) takes this condition into account. Note
that k0ðeÞ is a constant, and we will see that this constant is
the required rescaling factor.

We now show that for all s 2 I, F1ðe; sÞ > 0. We differen-
tiate the associativity relation FðFðx; yÞ; zÞ ¼ Fðx;Fðy; zÞÞ
with respect to x,

F1ðFðx; yÞ; zÞF1ðx; yÞ ¼ F1ðx;Fðy; zÞÞ; (6)

and set x¼ e (the identity of I) and obtain

F1ðy; zÞF1ðe; yÞ ¼ F1ðe;Fðy; zÞÞ: (7)

Therefore, if F1ðe; yÞ ¼ 0 for some y 2 I, then F1ðe;Fðy; zÞÞ
¼ 0 for all z 2 I. We choose z ¼ iðyÞ and obtain
F1ðe; eÞ ¼ 0, which cannot be true because Fðx; eÞ ¼ x for
all x. Thus, @Fðx; eÞ=@x ¼ F1ðx; eÞ ¼ dx=dx ¼ 1. In particu-
lar, F1ðe; eÞ ¼ 1. It follows that F1ðe; yÞ 6¼ 0 for all y 2 I,
and because for y¼ e, we have F1ðe; eÞ ¼ 1, and F1 is con-
tinuous. Thus, F1ðe; yÞ must always be positive.

From Eq. (4), the function 1=F1ðe; sÞ is continuous in s,
and hence is integrable. Thus we can define

kðxÞ (
ðx

e

ds
F1ðe; sÞ

: (8)

By the fundamental theorem of calculus, it follows that k is
differentiable and

k0ðxÞ ¼ 1

F1ðe; xÞ
; (9)

where in particular k0ðeÞ ¼ 1.
By using the definition (8) for k we can show that

kðFðx; yÞÞ ¼ kðxÞ þ kðyÞ and k: I ! R are bijective. For the
first part, we fix y 2 I and consider the derivative with respect
to x of both functions kðFðx; yÞÞ and kðxÞ þ kðyÞ, respectively.
From Eq. (9), the derivative of the first function is

k0ðFðx; yÞÞF1ðx; yÞ ¼
F1ðx; yÞ

F1ðe;Fðx; yÞÞ
: (10)

By differentiating the second function, we obtain Eq. (9).
We require that Eqs. (10) and (9) are equal, that is

F1ðx; yÞ
F1ðe;Fðx; yÞÞ

¼ 1

F1ðe; xÞ
; (11)

or equivalently,

F1ðx; yÞF1ðe; xÞ ¼ F1ðe;Fðx; yÞÞ: (12)

This result is the associativity condition (7), where x; y; z is
replaced by e; x; y. We have shown that the functions
kðFðx; yÞÞ and kðxÞ þ kðyÞ differ by an additive constant, and
because they are equal for x¼ e, it follows that the additive
constant should be zero, and so we have the required
equality

kðFðx; yÞÞ ¼ kðxÞ þ kðyÞ: (13)

To show that k is bijective, observe that because
k0ðyÞ ¼ 1=F1ðe; yÞ > 0, k is increasing and therefore is injec-
tive. To show surjectivity, observe that because k is continu-
ous, kðIÞ is an interval of R. Choose x 6¼ e in I and observe
that because

kðxÞ þ kðiðxÞÞ ¼ kðx& iðxÞÞ ¼ kðeÞ ¼ 0; (14)

kðxÞ and kðiðxÞÞ are both nonzero and have opposite signs.
For all positive integers n,

kðx& ) ) ) & x
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n

Þ ¼ nkðxÞ; (15)

and

kðiðxÞ & ) ) ) & iðxÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n

Þ ¼ nkðiðxÞÞ: (16)

Thus, when n ! 1, one of the two sequences goes to þ1
and the other to *1, and because kðIÞ is an interval, we
must have that kðIÞ ¼ R. Thus, we have shown that k is
bijective.
If the group law x& y ¼ Fðx; yÞ has continuous partial

derivatives, the group is abelian. This property follows from
the isomorphism given in the proposition because the group
of real numbers under the usual addition operation is com-
mutative. The function k determines the group operation in
ðI;&Þ because it is bijective. Its inverse k*1 satisfies

x& y ¼ Fðx; yÞ ¼ k*1 kðxÞ þ kðyÞð Þ: (17)

III. TRANSFORMATIONS FROM COMPOSITION
EXPRESSIONS

A. Entropy and thermodynamic probability states

We may think of k: ðI;&Þ ! ðR;þÞ as a logarithm,
because this is the transformation function when the interval
is I ¼ ð0;1Þ and the operation in I is the usual product of
positive real numbers Fðx; yÞ ¼ xy, with the identity e¼ 1. In
this case F1ð1; xÞ ¼ x, and the proposition implies that

kðxÞ ¼
ðx

1

ds
F1ð1; sÞ

¼
ðx

1

ds
s
¼ lnðxÞ: (18)

This result is reminiscent of the relation between entropy and
thermodynamic probability. Recall that the thermodynamic
probability is the number of microstates corresponding to a
given macrostate.2 It is a positive integer bounded between
one and the total number of microstates. The result by Planck3

involves two premises: the entropy of two systems equals the
sum of the individual entropies, and the probability of inde-
pendent states equals the product of the individual probabil-
ities. The entropy composition law is the usual sum in the
reals, and thus it forms an abelian group under the addition
operation. The thermodynamic probability composition law is
defined in terms of the product of real positive numbers.
These two groups are therefore isomorphic with transforma-
tions given by the logarithm and its inverse, the exponential.

B. Relativistic addition of velocities

In the special theory of relativity in one dimension, the ve-
locity of a particle is restricted to the interval of real numbers
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ð*c; cÞ, where c is the speed of light in vacuum, and the
addition of velocities is given by

v1 & v2 ¼
v1 þ v2

1þ ðv1v2Þ=c2
: (19)

It can be verified that if v1; v2 2 ð*c; cÞ, then
v1 & v2 2 ð*c; cÞ, addition is associative, has an identity ele-
ment 0 2 ð*c; cÞ, and inverses exist. In other words, the
interval ð*c; cÞ is a group with the operation given by Eq.
(19). This group structure for the relativistic composition
law has been recognized either implicitly or explicitly by
several authors.4,5 For I ¼ ð*c; cÞ and Fðv1; v2Þ ¼ v1 & v2
¼ ðv1 þ v2Þ=ð1þ v1v2=c2Þ, we have e¼ 0 and F1ð0; sÞ
¼ ðc2 * s2Þ=c2. Hence from Eq. (8), the transformation of
kc: ð*c; cÞ ! R is

kcðvÞ ¼
ðv

0

ds
F1ð0; sÞ

¼ c

2

ðv

0

1

c* s
þ 1

cþ s

# $
ds (20a)

¼ c

2
ln

1þ v=c
1* v=c

# $
¼ c; arctanhðv=cÞ: (20b)

Recall that the hyperbolic tangent tanh: R ! ð*1; 1Þ is a
bijection with inverse arctanhðxÞ ¼ ð1=2Þ ln ð1þ xÞ=ð1* xÞ.
Thus we recognize kcðvÞ as a rescaling of the inverse hyper-
bolic tangent. Therefore, the inverse of kc is the rescaled
hyperbolic tangent function

k*1
c ðvÞ ¼ c tanhðv=cÞ: (21)

Moreover, it satisfies k*1
c ðv1 þ v2Þ ¼ k*1

c ðv1Þ & k*1
c ðv2Þ. The

addition of velocities in Eq. (19) is thus given by the addition
formula for the hyperbolic tangent

c tanh ðv1 þ v2Þ=cð Þ ¼ c
tanhðv1=cÞ þ tanhðv2=cÞ
1þ tanhðv1=cÞ tanhðv2=cÞ

# $

¼ k*1
c ðv1Þ þ k*1

c ðv2Þ

1þ k*1
c ðv1Þk*1

c ðv2Þ
c2

; (22)

a result usually described in terms of a pseudo-angle of rota-
tion of the Lorentz transformations (see Ref. 6). The function
k*1
c is an isomorphism from the group of real numbers with

the usual sum, denoted by ðR;þÞ to the group ð*c; cÞ with
the addition & given by Eq. (19). A differentiable group
operation in the interval ð*c; cÞ is thus necessarily equal, up
to an isomorphism, to the Lorentz–Einstein addition of paral-
lel velocities. This derivation is a generalization of the argu-
ment given by David Mermin.7

IV. COMPOSITION RELATION GIVEN THE
TRANSFORMATION

If the transformation k is known, then from Eq. (17) the
composition may be readily obtained. From the identity
k*1kðxÞ ¼ IðxÞ ¼ x, we recover the composition law as
Fðx; yÞ ¼ k*1 kðxÞ þ kðyÞ½ ,. For example, the inverse of
the logarithm transformation k ! ln is the exponential.
The composition rule is then Fðx; yÞ ¼ k*1 kðxÞ þ kðyÞ½ ,
¼ exp ln xþ ln y½ , ¼ xy, and hence the product rule is
obtained. In the entropy example, the composition of two
non-interacting thermodynamic systems requires that the

total entropy equal the usual sum of (real positive) entropies.
Given the exponential transformation, to obtain the thermo-
dynamic probability from the entropy, the composite thermo-
dynamic probability must be the product of the individual
thermodynamic probabilities.

A. Inverse relation

The inverse relation between variables is common in
physics. The inverse potential V / 1=x gives rise to the fa-
miliar inverse quadratic forces in electromagnetism and
gravitation. Composition rules for quantities of the form 1=x
are also familiar in electrical circuits for parallel resistors or
capacitors in series. This inverse relation is also observed in
the classical equipartition principle Ub ¼ 1=b, where the
mean energy is Ub, b ¼ 1=kT, k is Boltzmann’s constant,
and T is the temperature. Given this transformation, the com-
position rule is readily obtained from Eq. (17)

Fðx; yÞ ¼ k*1 kðxÞ þ kðyÞ½ , ¼ 1

x
þ 1

y

% &*1

¼ xþ y

xy

% &*1

¼ xy

xþ y
: (23)

This operation does not satisfy the group differentiable
requirements. Thus, it is not surprising that F1ðe; yÞ poses
problems, because it should never be equal to zero. We pro-
pose the following formalism in the context of Lie groups to
overcome these drawbacks. Let us consider the set
I ¼ R*f0gð Þ [ f1g, where we define the operation

x& y ¼

xy

xþ y
x 6¼ 0; y 6¼ 0; x 6¼ *y

1 x 6¼ 0; y 6¼ 0; x ¼ *y
x y ¼ 1
y x ¼ 1:

8
>>><

>>>:
(24)

It is straightforward to check that this operation is associative
and commutative, 1 is the identity, the inverse of x is *x
and *1 ¼ 1. Thus ðI;&Þ is an abelian group. This con-
struction corresponds to a stereographic projection in one
dimension. The mapping k: I ! ðR;þÞ defined by

kðxÞ ¼
1

x
x 6¼ 1

0 x ¼ 1;

8
<

: (25)

is an isomorphism with inverse k*1: ðR;þÞ ! I

k*1ðxÞ ¼
1

x
x 6¼ 0

1 x ¼ 0:

8
<

: (26)

We define open neighborhoods of 1 as images under k*1 of
open neighborhoods of 0 2 R so that k is a homeomorphism.
If we write the derivative of the composition rule at the neu-
tral as a limit without explicit evaluation

F1ðe; yÞ ¼
d

dx

xy

xþ y

# $''''
x¼e

¼ y

xþ y

# $2
'''''
x¼e

¼ lim
e!1

y

eþ y

# $2

; (27)
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the transformation k can be consistently obtained from Eq.
(8) evaluated in the limit

kðyÞ ¼ lim
e!1

ðy

e

k0ðeÞ
F1ðe; sÞ

ds ¼ lim
e!1

ðy

e

*e*2

s
eþ s

# $2
ds; (28)

because k0ðeÞ ¼ *e*2. The transformation is thus

kðyÞ ¼ lim
e!1

*
ðy

e

ðeþ sÞ2

s2e2
ds

( )

¼ *
ðy

1

1

s2
ds ¼ 1

y
: (29)

This result shows that the 1=x transformation can be obtained
as a limit case of the one-dimensional Lie group formalism.

We remark that the composition rule for two systems sat-
isfying the equipartition principle with temperatures
b1 ¼ 1=kT1 and b2 ¼ 1=kT2 is, according to Eq. (23),

Ub ¼ Ub1Ub2

Ub1 þ Ub2
: (30)

For a quantum system, the mean oscillator energy UP as a
function of b is (Ref. 8)

UP ¼ 1

2
!hx coth

!hx
2

b
# $

: (31)

This transformation leads to the mean oscillator energy com-
position rule

UP1 & UP2 ¼
ð!hx=2Þ2 þ UP1UP2

UP1 þ UP2
: (32)

for ð!hx=2Þb1 þ ð!hx=2Þb2. Equation (32) reduces to the clas-
sical equipartition transformation (30) in the limit !h ! 0.

V. CONCLUSIONS

We have shown that any differentiable group law in an
open interval of real numbers is isomorphic to the additive

group of real numbers. When the composition rule is known,
it is possible to obtain the transformation into a group that
composes with the real number addition rule. If the transfor-
mation between two quantities is known and one of them
adds with the usual real addition rule, then the composition
rule for the other variable can be obtained.
This procedure can be applied to a wide variety of phe-

nomena. The condition is that the physical quantity should
fulfill group differentiable properties, most importantly the
associative and differentiable requirements. Examples we
discussed include the entropy and thermodynamic probabil-
ity, the relativistic addition of velocities, and 1=x potentials.
In the last example, care should be taken to preserve the
group structure. The differentiable condition is quite strin-
gent. For example, spaces with metric of the form
Fðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn þ ynn

p
are not differentiable at the origin

F1ðe; eÞ, and thus the transformation k cannot be obtained
from the theorem.
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