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Vapnik-Chervonenkis dimension of neural networks with binary weights
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We investigate the Vapnik-Chervonenki¢éC) dimension of the perceptron and simple two-layer networks
such as the committee and the parity machine with weights restricted to valueBor binary inputs, the VC
dimension is determined by atypical pattern sets, i.e., it cannot be found by replica analysis or numerical Monte
Carlo sampling. For small systems, exhaustive enumerations yield exact results. For systems that are too large
for enumerations, number theoretic arguments give lower bounds for the VC dimension. For the Ising percep-
tron, the VC dimension is probably larger thBifi2. [S1063-651X%97)05203-3

PACS numbds): 87.10+e

[. INTRODUCTION Let us also note that in the mathematical literature binary
weights are usually assumed to take on the values 0 and 1.
Presently investigations in different fields including math-Physically minded people, on the other hand, prefer the val-
ematical statistics, computer science, and statistical mechanes— 1 and 1 reminescent of spin systems. As we will show,
ics aim at a deeper understanding of information processintjlese two choices make a difference.
in artificial neural networks. Every field has developed its The paper is organized as follows. After giving the basic
own concepts, which, although related to each other, arélefinitions in the next section we discuss some simple ex-
naturally not identical. In order to uséand appreciae amples in Sec. lll. In Sec. IV we give a short discussion of
progress made in another field it is hence important to knowanalytical methods using the replica trick to calculate the
the different concepts and there mutual relation. The Vapnikbehavior of the typical growth function. Section V is devoted
ChervonenkigVC) dimension is one of the central quantities to the numerical investigation of the typical growth function
used in both mathematical statistics and computer science f8r the binary perceptron and simple two-layer networks. In
characterize the performance of classifier systgig]. In Sec. VI we derive bounds for the VC dimension of neural
the case of feedforward neural networks it establishes corl€tworks with binary couplings including simple multilayer
nections between the storage and generalization abilities @ystems. The bounds show that the VC dimension is deter-
these system$3—5]. Unfortunately, for most architectures mined byatypicalsituations. The VC dimension hence can-
the precise value of the VC dimension is not known and onlynot be inferred from the properties of the typical growth
bounds exis{6]. function. We give arguments that the value of the VC dimen-
The VC dimension was introduced to characterize certai$ion for networks with binary weights may depend on
extremesituations in machine learning. It is therefore very Whether the input vectors are continuous, binary (0,1), or
useful to derive bounds for the network performance by conbinary (—1,1). Finally, Sec. VII contains our conclusions.
sidering the worst possible case. Complementary investiga-
tions in statistical mechanics focus on ttypical behavior 1. BASIC DEFINITIONS
described by appropriate averages. In simple situations as
provided, e.g., by the spherical perceptron, it turns out that The VC dimensiord ¢ is defined via the growth function
the typical and worst case behaviors are not dramaticallyA (P). Consider a seX of instancex and a seC of (binary)
different [7]. It is then comparatively easy to establish con-classificationsc: x—{—1,1} that group allxe X into two
nections between results obtained in different fields. classes labeled by 1 and1, respectively. In the case of
In the present paper we discuss some peculiarities that afeéedforward neural network$] with N input units and one
encountered when analyzing the VC dimension of neuraputput unit, X is the space of all possible input vectafs
networks with binary weights. Binary weights are the ex-€R or £e{—1,+1}", the class is defined by the binary
treme case of discrete couplings with obvious advantages iautputo=*1, andC comprises all mappings that can be
biological and technical implementations. It turns out, how-realized by different choices of the couplingsand thresh-
ever, that in this case the typical and the extreme behavior aflds @ of the network. For any sdi*} of p different inputs

the network can be rather different. Therefore, the relatiorx, ... xP we determine the numbex(x?, ... xP) of dif-
between results obtained by different approaches is less offerent output vectorgoy, . ..,0p} that can be induced by
vious. using all the possible classificatiogs C. A pattern set is
called shattered by the class C of classifications if
A(xY, ... xP) equals 2, the maximal possible number of
*Electronic address: stephan.mertens@physik.uni-magdeburg.délifferent binary classifications gb inputs. Large values of
'Electronic address: andreas.engel@physik.uni-magdeburg.de A(x%, ... xP) hence roughly correspond to a large diversity
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of mappings contained in the cla€s The growth function
A(p) is now defined by

A(p)zr{n%xA(xl, xRy, (1)

It is clear thatA(p) cannot decrease with. Moreover,
for smallp one expects that there is at least one shattered set
of size p and henceA(p)=2P. On the other hand, this ex-
ponential increase of the growth function is unlikely to con-
tinue for all p. The value ofp where it starts to slow down
should give a hint on the complexity of the clad@of binary FIG. 1. Feedforward two-layer network with tree structure and
classifications. In fact, the Sauer lemifria9] states that for nine input nodes, three hidden nodes, and one output node.
all classesC of binary classifications there exists a natural
numberd,,c (which may be infinit¢ such that

N
o=sgr( > JiE- 0). @
A(p)=2p if pﬁdvc, =1
@ y .
with weight vectordJe {+1}". The perceptron is a prototype
dvc D of what is usually termed single-layer feedforward networks:
A(p) = E ( i ) if p=dyc. The N input valuesé; are summed up and the resulting
= “field” is passed through a nonlinear function to yield a
_ ] ] o single output values. The computational capabilities of
dyc is called the VC dimension of class. Note that it will,  gingle-layer feedforward networks are rather limited. Hence
in general, depend on the sétof instances to be classified. gne is interested in multilayer networks, where the output of
Hence, in the case of neural networks there can be differerg‘,ng|e_|ayer networks is used as input for another single-
values ofd ¢ for the same class of networks depending onjayer network. Thelsing committee machinand thelsing
whether the input patterns are real or binary vectors. ~  parity machineare examples of two-layer networks. In both
Due to the max in Eq(1) it is possible that the VC di- machines, the input values are mapped t& binary values
mension is determined by a single very special pattern set. I, py K Ising perceptrons. They are called the internal
many situations emphasis is, however, ont{fpcal proper-  representation of the input. The internal representation is
ties of the system. In order to characterize the typical storaggapped onto the final output=+1 by the so-called de-
and generalization abilities of a neural network a probabilitysgder function in the output layer. The decoder function is

measureP on the input seX is introduced. One then asks for ifferent in both machines. The committee-machine uses a
the properties of théypical growth functionAP(p), which perceptron with all weights-1,
at variance with Eq(1) is defined as the most probable

value of A(x%, ... xP) with respect to the measuf@ In the K K N
relevant limit of large dimensiolN of the input space it is B B (K)
generally assumed that the distribution &fx*, ... xP) is o=Sg 2 k| =SY kzl 9 ,21 JTE—0, O

sharply peaked around this value. In the same it oo

methods from statistical mechanics can be used to investi-

gate the properties oAYP(p). This limit is nontrivial if =~ Where J" is the weight vector of the perceptron that
a=p/N=0(1) and results indyc=O(N). We will call “feeds” the kth hidden node. The restriction to all weights

a yc=limy_, .. dyc/N the VC capacity of the neural network +1 in the output perceptron is not as severe as it may ap-
[10]. In addition, we may defind Y2 as the value obp at ~ Pear: The storage properties of this architecture are the same
which AYP(p) starts to deviate from % and @s for a machine where the output perceptron is an arbitrary

a¥=limy_. .. d Y2/N. The storage threshold is as usual SiNg perceptrorisee Appendix A _ _
defined byAYP(p)/2Pe =1/2 anda.=limy_...p./N is the The parity machine simply takes the parity of the internal

storage capacity. representation
Using Stirling’s formula in Eq.(2) and replacing the sum

by an integral, one can show that for lartjethe relative N
deviation of the upper bound fromP2becomesO(1) if =11 =11 sgr‘(z J§k>§i—0). (6)
a>2ayc (see Sec. IY. Since we always have k=1 = k=1 =1

AYP(a )< A(a) this implies
In general, a hidden node can receive input from all input
a.<2a\c. (3)  nodes. In this case we hawK weights to specify. If the
input nodes are distributed among the hidden nodes such that
In this paper we concentrate on three sets of classifiers: theo input node feeds more than one hidden node, the net has
Ising percpetron, the Ising committee tree and the Ising para tree structurésee Fig. 1 For simplicity we will assume
ity tree. The Ising perceptronrealizes the classification that the input nodes are distributed evenly among the hidden
E—*1via nodes, i.e., each subperceptron Ned& weights.
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. SOME SIMPLE EXAMPLES by typical pattern sets. We also note that the storage capacity
is believed to be the same for binary and Gaussian patterns
‘f13—13. As we will see in Sec. VI, it is unlikely that this
holds also for the VC dimension.

To begin with let us discuss some simple examples. In th
case of the spherical perceptron defined by E. but
now with Je R, £;J?=N, the exact resultdyc= N + 1 and
a.=2 have been obtained analyticall¥1]. Moreover, it is
well known that the number of different realizable output IV. ANALYTICAL METHODS
vectors(dichotomieg is the same for all input pattern sets in | et us fix a particular sef£’, . .. ,£P} of input patterns
general positior11]. Hence the max in Eq(1) is realized  fed into a neural network with parametersDifferent values
by almost all possible inputs sets of lengtp and  of the parameters will result in different output strings

AY(a)=A(a). Furthermore, Eq(3) is satisfied as equal- {51 ... 4P} and hence the input patterns induce a partition
ity. of the parameter space into different cells labeled by the
A particular simple pattern set for which the result for the realized output sequencgs”}. The cells have a certain vol-

VC dimension can easily be verified is given by ume V({c*}), which might be zero if the output string

£-(0,0,0 0 {a*} cannot be realized. An interesting quantity is the num-
AT ber of cells of a given size

§=(100,....0, NV)= T8V =V({oh}), ®

£=(0,10,...,0, (") which, of course, still depends on the particular set of input
. patterns{&“}. It is possible to calculate the typical value of
N(V) for randomly chosed&*} using multifractal methods

&=(0,0 0.1 and an interesting variant of the replica trik6]. This cal-
T culation has been explicitly performed for both the spherical
An arbitrary output vectordo, oy, . . . o) can be realized and the Ising perceptrdd 7,18 and we give in this section a
for these inputs by using;= o, and = — a/2 brief summary of the results relevant for the present paper.
i .

Another interesting example is provided by a perceptron FOr the perceptrofd) (with §=0 for simplicity) we have
(4) for which the couplings are constrained to take the values

J;={0,1 only. Using the set of input patterns described V({gu}):J du(D]] 6(cr3- &), (9)
above but omitting &, an arbitrary output string u
(o1, ...,0n) Ccan be realized by using;=(1+0;)/2 and

o=—1/2. ThereforeN=<dyc< N+1. On the other hand, it Where [du(J)=(2m7e)”“2[1I;dJ; 5(2 J2=N) for the
is known that the storage capacity of this perceptron is glverfl?phe”Cal perceptron ar}w,u(J) 2" EJ -+ for the Ising
by a.=0.59 [12]. This large difference betweea. and case. The natural scale ¥ffor N—c is then 2Nanditis
2a ¢ is due to the fact that the VC dimension is determinedconvenient to introduce&({c*})=—1/N log,V({c*}) as a
by a very special pattern set and tid¥’(p) is much smaller measure for the size of the cells. Similarily, the number of
thanA(p). Hence the number of realizable output vectors iscells is exponential ifN and we therefore use
no longer the same for all input vectors in general position.

Finally, we consider the so-called Ising perceptron, again 1 1
described by Eq(4), but now with the constrairt;= =1 on c(k)= Nlong\/( k)= N|092Tr{ou}5(k— k({a*})) (10)
the couplings. Since the couplings used above to show that
the pattern sef7) is shattered by a spherical perceptron fulfill to characterize the cell size distribution. Realizing tbék)
this constraint it is clear that the VC dimension of the Isingis the microcanonical entropy of the spin systémt} with
perceptron is for patternge R equal toN+ 1, exactly as for  Hamiltonian Nk({c*}) it can be calculated from the free
the spherical perceptron. F&*=0 we getdyc=N in both  energy

cases.
For binary input pattern§, = =1 we transform the pattern 1 o
set (7) according to &—2&—1. Every output vector f(B)=- '092Tr{0“}2 pRKEED (1)
(0'0 o1, ...,0n) can then be realized by usiny=o; for
ji=1 N and 0= —oy—Zjo;. Therefore the VC dimen- via Legendre transform
sion |s agawdvc N-+1. However, since much of the inter-
est in neural networks with discrete weights is due to their c(k)=mﬁin [Bk—Bf(B)]. (12

easy technical implementation it is not consistent to design

an Ising perceptron with a threshold of ordér More inter-  From the experience with related systefi8] one expects

esting is the determination of the VC dimension of the Isingf (and thereforec) to be self-averaging with respect to the

perceptron withou{for N odd or with a binary threshold  distribution of the input patterng§“. The average of ()

0= =1 (for N even for binary patterns. This is a hard prob- over the inputs can be performed using the replica trick.

lem (see Sec. Vl Within a special replica symmetric ansatz the calculation of
We note that the storage capacity of the Ising perceptrori(8) can be reduced to a saddle-point integral over @oe

has been shown to he,=0.83[13]. Hence, also in this case the spherical or two (for the Ising casgorder parameters,

we havea < 2a ¢ and the VC dimension is not determined which are evaluated numericall{7].
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1.0 : Hence it may happen that the relative deviation is exponen-
tially small in N. In principle, we are able to detect this
deviation by using thevhole function ¢k). However, for
very small and very largk& the calculation oft(k) necessi-
tates replica symmetry breakihg7], which renders the cal-
culation practically impossible.
But there is another way to get some information on
¢ 05| | a YR from the c(k) curves. It is clear from Eq(11) that
f(8) will diverge for all 8<0 if some of the cells are empty,
i.e., if k({ol)=—o. For a<a (R this is possible only if
the patterns are linearily dependent. For Gaussian patterns
the probability for this to happen is zero and therefore no
divergence off for <0 will show up for a<a Y2. [For
binary patterns the probability for two identical patterns is
. 2N andf(B) should be divergent foB<0 for all . This
%% 05 1.0 is, however, not found in the explicit calculation since by
k keeping only the first two moments of the pattern distribution
in performing the ensemble average one effectively replaces
FIG. 2. Distribution of cell sizes(k) in the coupling space of the original distribution by a Gaussian oh&or a>a g,
an Ising perceptron with loading ratioe=0.2,0.4,0.833,1.245 however, there araypically some empty cells and(3)
(from left to righ. Inside the region given by the diamonds replica should be divergent for ajB<0.
symmetry holds. The dot marks the divergences of negative mo- Within the replica symmetric approximation one finds this
ments. divergence of negative moments for both the spherical and
the Ising perceptron g8=(a—1)/a if a<1l andB=0" if
Figure 2 shows some of the resulting curves for the Isingr=1 [17]. This suggestsr J2=1 for both cases. For the
case. Fora=0.2 and 0.4 the corresponding curves for thespherical perceptron this coincides with the known result.
spherical perceptron are rather similar. The typical cell sizéVloreover, the poinf3=0,a=1 belongs to the region of lo-
is given byko,=arg max(k). ThereforeV,=2"Nk coincides  cal stability of the replica symmetric saddle point. For the
with the typical phase-space volume as calculated by a starsing case the result must be wrong sine&€2 cannot be
dard Gardner approa¢B0]. On the other hand,"**0) gives  larger thana,~0.83. Since also in this case the replica sym-
up to exponentially small countributions from other cell sizesmetric saddle point is locally stable gt=0,a=1, it is very
the typical total numbeA"? of cells as determined for the likely that there is a discontinuous transition to replica sym-
spherical perceptron by CovEt1]. From the explicit formu-  metry breaking as typical for this systdi3]. It remains to
las one can show that for the spherical perceptrorbe seen whether a solution in one step replica symmetry
c(kg)=a as long asky<w, i.e., Vo>0, andc(k)<a if breaking can provide a more realistic valueao}? .
Ko=22, i.e.V(=0. In principle, it is possible, using the same techniques, to
For the Ising perceptron there is a smallest possible celbbtain expressions for the typical growth function of simple
size knox=1 where only one coupling remains. Hence multilayer nets. However, the technical problems will in-
AYP~2Netko) if k<1 and AYP~2NAY) if ko>1. The bor- crease and replica symmetry breaking is again likely to show
derlineko=1 is realized fora=0.83, the well known value up. We just note that a related analysis, namely, the charac-
of a. [13]. The calculation of the curves(k) therefore es- terization of the distribution of internal representations
tablishes the connection between the two complementary apvithin the typical Gardner volume, has recently been per-
proaches by Cover and Gardner to determine the storage ctermed[21-23 for the committee machine. From these in-
pacity of neural nets. vestigations the storage capacity in the limit of a large num-
Since one has direct access to the number of realizableer of hidden units could be obtained.
output sequences it is tempting to use this approach also to
calculate the VC dimension analytically. Due to the averages
over the input distribution necessary to accomplish the cal- V. TYPICAL GROWTH FUNCTIONS
culation we can at most hope to determi&? in this way.
As discussed abovey, Y2 will only coincide with a ¢ if the
maximum in Eq.(1) is realized by a typical set of input
patterns. To determine 2 we have to find the value of at

The typical growth functiom\¥?(p) of a classifier system
that is parametrized b binary variables can be measured
numerically by an algorithm that mixes Monte Carlo meth-
ods and exact enumerati@24]. The enumeration is required

which the total number of cellA%" starts to deviate from g determineA (&, . .. ,£P), the number of different output
2N, For ayc<a<2ayc an asymptotic analysis of the yectors that are realizable for a given pattern set. To get this
bound in Eq.(2) reveals thaf8] number, one has to calculate the output vectors of ¥ll 2
classifiers. This exponential complexity limits the numerical
aVeN aN calculations to small values of.
2oN_ ( i ) L To getAYP(p), we drawp random unbiased patterigé
1=0

! 1 erfc[ /?(%_1”_ 13 e{+1N and calculateA(&, ... &P). This is repeated

2eN 2 again and again and the values ®f&, . .. £P) are aver-
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FIG. 3. Typical growth function of the Ising perceptron with  FIG. 4. Critical storage capacity, deduced fromA®P(p) for
binary patterns averaged over 1000 samples. The function is dh€ Ising perceptron, th&=3 Ising committee tree, and the
course only defined at discrete valuegpobut the continuous lines K=3 Ising parity tree.
ease the readability. The inset displays the valuesNer27 to-
gether with the error bars. until the set is no longer shattered. The number of patterns in

the set (1) gives a value fod Y2. These values are aver-
aged to yield AY’(p). The scale ofA for large N is aged over many random samples. The results are shown in

O(2V), so we average the logarithm Fig. 5. The dependence df2 on N is roughly given by
INAYP(p) = (In[A (£1, ... EP) Dy - (14 0.5N (Ising perceptron
p 0.6N committee tre

Figure 3 shows\YP(p) for the Ising perceptron with bi- dve(N) = ( - 2 (15
nary patterns. The curves display the expected behavior: 0.88N  (parity treg.
AYP(p) = 2P for small p and AYP(p)< 2P for larger values
of p. The transit?on.betwee.:n these.tq regimes seems to be- VI. BOUNDS FOR dyc
come sharper with increasing, but it is not clear whether
we get a true step function in the limM—o. The corre- The exact value ofl\ for the Ising perceptron with bi-
sponding curves for the committee and the parity tree lookiary or zero threshold and binary patterns is not known, not
similar. even in the limitN—<. Only bounds can be provided.

As a test we derive the critical storage capacityfrom An arbitrary set of classifiers that are parametrized\by

Fig. 3 by reading off the point wher®P(p)=2P~1. Figure
4 showsa. vs 1N for the Ising perceptron and the commit-

tee and parity tree witiK=3 each. The extrapolations to 280 ' ' ‘
N=« are in good agreement with the analytical results
a.=0.83 for the Ising perceptropl3], «.=0.92 for the 200 I O—O Perceptron
Ising committee tree witk = 3 [25], anda.=1 for the Ising O -- 0K =3 Committee tree
parity tree withK =2 [26]. O K =3 Parity tree
For the spherical perceptrah({£“}) is known to be the 15.0

same for all pattern sets in general position. The inset of Fig.
3 displays that in the case of the Ising perceptron the averag%—:-g
over the patterns introduces a statistical error that dmts © 10.0
tend to zero with increasing number of samples. This implies
that for the Ising perceptron the number of realizable output
sequences is not the same for all pattern sets in general po- 508>
sition.

The typical VC dimensiord {2 can principally be ob-
tained from AYP(p) as the number of patterns for which 0.0

10.0 15.0 20.0 25.0

AYP(p) starts to deviate from™2 Due to the statistical errors N
in AY(p), a separate evaluation df}2 is more appropriate.
For this, we calculate\(£', ... £P) for a random set of FIG. 5. Numerical values ofl 2(N) for the Ising perceptron,

patterns. If equal to'2 the set is enlarged by another randomthe K =3 Ising committee tree, and =3 Ising parity tree. The
pattern and\ ({£“}) is calculated again. This step is repeatedstraight lines between the points are guides to the eye.
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bits, like the Ising perceptron, cannot produce more than L N
2N distinct output vectors on any set of input patterns. So we sgnJ* & ) =sg 2—2 J;
have =1

=+1. (22b

dye(N)<N (16) Note that bothJ* andJ™ are balanced. This allows us to
ve apply Egs.(19) and (20) recursively to obtain the lower

as a general upper bound for “Ising-like” classifiers. bound

Finding good lower bounds is a bit more tedious. It can dun(N)=1 (N+2c— N N=N 2
be achieved by explicit construction of shattered sets. In ve(N)=3 ( ¢ o) 0 23
those cases, however, whetgR<d,c, shattered sets with for the general Ising perceptron, where is given by the
cardinality greater thad Y2 are rare and consequently hard cardinality of a shattered set for thelancedlsing percep-

to find by random search. tron with Ny nodes.
Now we are left with the problem of finding large shat-
A. Ising perceptron tered sets for the balanced Ising perceptron. A partial enu-

meration (see below yields shattered sets with cardinality

For the Ising perceptron it is shown in Appendix A that ¢=7,11,13 forN=9,15,17. This gives

dyc is the same folN odd, zero threshold and—1, binary

threshold. Therefore we can safely restrict ourselves to the L(N+5) for N=9
caseN odd and no threshold.
In Ref.[27] a special pattern set is given that yields dye(N) = ¢ 3(N+7) for N=15 (24)
dyc(N) =3 (N+3). (17) L(N+9) for N=17.

Shattered sets with cardinalif{N+3) are not too rare; they 1he corresponding shattered sets are listed in Appendix C.
This sequence of increasing lower bounds indicates that

do show up in the statistical algorithm of Sec. V. To get an :
improved lower bound for general values™f we consider  probably limy_..dyc(N)/N > 3.

a restricted variant of the Ising perceptron, thalanced There is a method that surely finds the largest possible
Ising perceptron where the couplings have minimum “mag-shattered set, i.e., the exact valuedyf.: exhaustive enu-
netization™: merationof all shattered sets. The overwhelming complexity
of O(2N2) limits this approach to small values of, how-
S J==+1. (18  ever. Nevertheless, the results obtainedNet9 are already
I

quite remarkablé¢27]:

The balanced Ising perceptrons are a subset of the usual Isingdvc(3)=3, dyc(5) =4, d\c(7)=7, dyc(9) = 7.
perceptrons, hence any pattern set that is shattered by the (25
former is as well shattered by the latter.

Now let{&, ... £€P} be a shattered set for the balanced
Ising perceptron witiN nodes and le{oq, ... ,0p} be an
output vector that is realized by the balanced weight vecto
J. Going fromN to N+2, we definegp+ 1 patterns

Again the corresponding shattered sets are listed in Appen-
dix C. They share a common feature: Using transformations
Ehat do not change\(p) (see Appendix ¢ they can be
ransformed into quasiorthogonal pattern sets, i.e., sets where
the patterns have minimum pairwise overlap

&=(—.&-), l=v=p (193 I A
- W gV = 26
§p+l=(_,_,...’_,+) (19b) N, wu=v. (26)
N,
N times (Exact orthogonality cannot be achieved férodd)

This observation appears reasonable. Consider a shattered
set of patterns. The corresponding cells in weight space have

and new couplings nonzero volumé/({s,}), i.e., each cell contains at least one
. - weight vectorJ. If we enlarge the shattered set by an addi-
J=(+,3,-), JI"=(=,3,+). (200 tional pattern, each cell must divide in two cells of nonzero

, .., ., volume. This process can be repeated until the first nondivis-
These couplings preserve the output values of the “old”jp e cell appears. If we assume that the divisibility of a cell
patterns decreases with its volume, we must look for cell structures
o~ _~ where the volume of the smallest cell is maximized. This is
sgrJ=&")=sgnd ¢ =o,, lsvs<p, (2D the case foequisizectells, i.e., for orthogonal patteriiig.

6).
while the balance property ensures that both classifications)

) uasiorthogonal pattern sets can easily be built from the
of the new pattern can be realized: Q - P y

rows of Hadamard matricesee Appendix B These are
N 4n X 4n orthogonal matrices with=1 entries. To get quasi-

SonJE P H=sad —2— Jl=—1 22 orthogonal patterns of odd lengt, we either cut out one
griI=e) gr( 2’1 ') (229 column (N=4n-—1) or add an arbitrary column
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FIG. 7. VC dimension of the Ising perceptron with binary pat-
terns vsN. The circles labeled quasiorthogonal and balanced are
lower bounds for the trudy, .

FIG. 6. Spherical perceptron withN=2. The four cells in —pv_ (v v v

weight space induced by patterdgz and & are equisized for Eh= (g gt . nE). (28
w=1/2, i.e., for orthogonal patterns.

_ _ We prove that the sEE*”,1su<dyc(N/K),1<v
(N=4n+1). Itis clear that there are many quasiorthogonal< d,,(K)} is shattered.
pattern sets wittp elements that can be constructed from a | gt {s,.} be a given output sequence of length
given Hadamard matrix. Bypartial enumeration i.e., by dve(K)dye(N/K). Since the{”} are shattered, we can al-
evaluation of some of them, we were able to find shatteregyays find{W*=+ 1}, such that
sets that exceed the lower bound given by E2¢) for cer-
tain values ofN:

K
13, N=15 U,L,V=Sgr( k§_:1 W’k‘rﬁ) (29)
17, N=23
dveN)=1 19 N=27 @ o
v INF for all v and «. Now we choose the couplings in theh

24, N=24. subperceptron such that
The corresponding pattern sets are listed in Appendix N/K
C. Systems witiN>31 \ivere not investigated. Note that the W,kbzsg,{ 2 Ji(k)giu), k=1,... K. (30)
lower bound ford,(N=31) is larger than the value re- i=1

ported in Ref[27].

Figure 7 summarizes our results for tNe<31. Both the
exact values and the lower bounds provided by E@g)
and (24) clearly exceed the maximum valagc=3(N+ 3)
found by the statistical method in Sec. V. The somewhat

This is always possible becauét is taken from a shattered
set. Combining Eqs29) and (30), we get

K N/K
irregular behavior of the lower bounds does not rule out a B (K) v e B
more regular sequel of the trugyc(N), including well-  Twr=59 gl sgr}; IVl v=1 dwe(K).
defined asymptotics. However, if the limit lim,..dyc /N ex- (31)

ists, it will probably be larger than 0.5.

. i.e., the pattern$28) form a shattered set and we find
B. Committee tree

To get a lower bound fod{., the VC dimension of the cT
Ising committee tree with binary patterns, we explicitly con- dyc(N)=dyc(K)dyc(N/K). (32
struct a shattered set based on shattered sets for the Ising
perceptron. Lef 7’} be a shattered set of an Ising perceptronNote that this lower bound matches the upper bohd
with K nodes and £} be a shattered set of ti¢/K-node  wheneverd,c(K) [dyc(N/K)] meet their upper bounds
subperceptron. Then we build pattef@4'” for the commit- [N/K]. Examples includ& =3 or 7 andN=21,K=7, and
tee tree by concatenation N=49.
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This lower bound is much larger than the values for In the present paper we have shown that even for the
dy? found in Sec. V. If we assume thaiw, sSimplest feedforward neural networks this task requires
=lim__ dvc(N)/N is well defined for the Ising perceptron, rather sophisticated techniques if both the couplings of the
Eq. (32) reads ne'_(W(_)rk ar_1d the inputs are restricted to b_mary yalde’ls._

This is mainly due to the fact that the VC dimension defined
dSI(N)=Na2., N> K> 1. (33 by a supremum over all pattern sets of given size is deter-
mined by atypical pattern sets. Consequently, Monte Carlo
methods as well as analytical estimates involving pattern av-
erages do not yield reliable results and one has to resort to

We follow the same strategy and construct a shattered seixact enumeration techniques. These methods are naturally
from the patterns of a shattered $ét”} of the subpercep- restricted to small dimensions of the input space, but the
trons. The first pattern is simply built fron{ consecutive results obtained can be used to get lower bounds for the VC
patternsé!, dimension of larger systems. In some cases, even tighter
o N bounds can be derived from number thgoret@c arguments.

=(&,....&). (34) Complementary one could argue tigical situations are
of more interest than the worst case. Accordingly, a typical
VC dimensiond {2 has been defined in Sec. Il. One always

C. Parity tree

I

All other patterns differ fronE° in only one subpattern

Erk=(&, .. g)eé, . 8 hasd J8= dy since an average can never be larger than the
supremum.
1 kth position, (35 For the Ising perceptronJ(=*+1) we founddyc=N as

long as the patterns are allowed to take on the value O, re-
wherek=1,... K and u=2, ... dyc(N/K). This set of gardless of whether we use real-valued @y1} patterns. If,
k[dyc(N/K)—1]+1 patterns is shattered. however, also the patterns are Ising-like, i&s{=1}" our
Proof. Let {og,0y ,} be a given output sequence for our numerical results suggest
patterns. We choose the weight& in the subperceptrons

such that 7(N+3)<dyc(N)<N (39
sgrdV- Y=oy, for generalN. For largeN, the VC dimension is presumably
substantially larger than the typical VC dimension
sgrd*b. g =1, d VB(N) = N/2.
(36) Similar results are found for two simple examples of
) multilayer networks: the committee and the parity tree with
sgrdM- g =0y, Ising couplings. Here the results are
sgrJ* ). g =090y, dvc(K)dye(N/K)<dGi(N)<N (39)
for u=2,... dyc(N/K). This is always possible because for the committee tree and
{&"} is shattered. With this assignment of weights, the parity ot
tree mapgE°,E*" to the prescribed output sequence. K[dyc(N/K) =1]+1<dyc(N)<N (40)

Our shattered set provides us with a lower bound for the ) ) ) )
VC dimension of the parity tree for the parity tree withK hidden nodes. For the committee

tree we find again thad t\}’g<dvc. For the parity tree our
diE(N)=K[dyc(N/K)—1]+1. (377  data do not allow us to draw the same conclusion, but this
may be due to the low quality of the lower bound in E40).
For K=1 the parity tree is equivalent to the simple percep- We finally note that the growth functioA(p) related to
tron and Eq.(37) reduces tal{-(N)=dyc(N). If one inserts the VC dimension is used to derive the famous Vapnik-
the lower bounds fordy into the right-hand side of Chervonenkis bound for the asymptotic difference between
Eq. (37), the resulting values are generally larger thanlearning and generalization error. This bounds results from
dfL, but the differences are much smaller than for the comthe analysis of the worst case. It would be interesting to
mittee tree, and for some Va|ues|‘gbf d {)’8 even exceeds the investigate whether a similar bound for tt)q:)ical generali-
right-hand side of Eq(37). We do not know whether Zzation behavior could be obtained frofP(p), which, in
Eq. (37) is only a bad lower bound or whether the maximumgeneral, is much easier to determine.
shattered sets for the parity tree are not as atypical as for the

Ising perceptron and the committee tree. APPENDIX A: SYMMETRIES
Let {&, ... &P} be a set of binary+1 patterns and
VIl CONCLUSION A(&, ... &) the number of different output sequences
The VC dimension is one of the central quantities to char{o1, . . . ,0) that can be realized by the Ising perceptron for
acterize the information processing abilities of feedforwardthis particular set of patternd (&, . .. £P) is invariant un-
neural networks. The determination of the VC dimension ofder the following transformations of&, . .. ,£P}: comple-

a given network architecture is, however, in general, a nonment a whole patterng“— — &"; interchange two patterns,
trivial task. &—§&; complement one entry in all patterns
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(k=1..., p), & —¢ and interchange two entries in all -1 -1 -1 -1 -1 -1 -1 -1
pattgrns f=1,...p) &<§& s Applying these transfor- 1 +1 -1 +1 -1 +1 -1 +1
mations, we can always achieve that all patterns have
gh=—1. -1 -1 +1 +1 -1 -1 +1 +1
Now we assume thatl, the number of couplings, is odd -1 41 +1 -1 -1 +1 +1 -1
and'that there is no threshold. L&tbe a weight vector t_hat Hp=| 1 -1 -1 -1 +1 +1 +1 +1
realizes an output sequence; . . . ,op) for a pattern with
f=—1: -1 +1 -1 +1 +1 -1 +1 -1
-1 -1 +1 +1 +1 +1 -1 -1
< 1 41 41 -1 +1 -1 -1 +1
o,=sgn > Ji&—dy|, 1swv=p. (A1)
i=1 (B3)

Let q be an odd prime power. Then Hadamard matrices of

We use the lefN—1 bits of §” as a pattern set for the Ising Paley typecan be constructed for

perceptron witilN—1 input units and a binary threshotal.
Identifying ® with Jy in Eqg. (Al), it becomes obvious that

A(&, ... &P) is the same in both cases. Hence we may B
restrict ourselves to the cadeodd and no threshold to dis- M= q+1 for g=3 mod4 (B4)
cuss the VC dimension of the Ising perceptron. 2(q+1) for g=1 mod4.

Now we consider a two-layer feedforward network with
K perceptrondspherical or Ism}(;k)operatmg between input  pajey's constructiofi2g] relies on the properties of finite
and hidden layefweight vectors]™ and an Ising perceptron s40is fields GF¢) [29], whereq is an odd prime power,

as decoder function with weight vectd”). Suppose that a  egpecially on theuadratic charactery of GF(q), defined by
given output sequence is realized by a weight vector with

some entriesd?=—1 in the decoder perceptron. The output
sequence is left unchanged if we s]&t: +1 and at the same

time complement all weights in théth subperceptron 0 ff x=0 _
J®— — 3K This transformation allows us to realize any x(x)={ +1 if x#0 is a square (BS)
realizable output sequence with dﬂ= +1. Hence the VC —1 otherwise.
dimension of the committee machine equals the VC dimen-
sion of the two-layer perceptron with Ising weights in the.l.hen for anya+0
output layer. '
APPENDIX B: HADAMARD MATRICES ) ;q) x(X)x(x—a)=—1. (B6)

A Hadamard matrix is ammXm matrix H with =1 en-
tries such that To construct a Paley-type matrix faq=3 mod4, we
start with theqxq matrix M = (m;;) whose rows and col-
umns are indexed by the elements of GF(

HH =mlI, (B1)

wherel is themXm identity matrix. IfH is anmX m Had- - :{ -1 i 1= (B7)
amard matrix, them=1,m=2, orm=0 mod4. The rever- Ul x(i—j) if i#j.
sal is a famous open question: Is there a Hadamard matrix of
order m=4n for every positiven? The first open case is Hence, by Eq.(B6)
m=428.
If H andH’ are Hadamard matrices of orderandm’,
respectively, their Kronecker produet® H' is a Hadamard
m_atrix of ordermm’. Starting with the Z 2 Hadamard ma- E My My :{
trix jeGHaq)

d, h=i,

-1, h#i. B8)

Now adjoin one row and one column with all entriesl to
get a Hadamard matrix of order+ 1. This gives Hadamard
, (B2) matrices of order 4,8,12,20,24,28, ... .
For exampleg=11. The Galois field G&1) is equiva-
lent to the integerg0, . ..,1Q together with their addition

this gives Hadamard matrices of order 4,8,16,,2", the  and multiplication modulo 11. The squares are 1,4,9,5,3 and
so-calledSylvester-typenatrices. For example, we get

-1 -1
H,=
27l -1 +1
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+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1
+1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1
+1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1
+1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1
+1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1

M”11 D1 S1 1 41 -1 -1 41 -1 +1 +1 +1 (B9)
+1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
+1 +1 +41 -1 -1 -1 +1 -1 -1 +1 -1 +1
+1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
+1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1
+1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1
|
For g=1mod4, the construction starts with lent to the integerg0, ... ,4 and their addition and multi-

the (@+1)x(g+1) matrix M=(m;), indexed by plication modulo 5. The squares are 1 and 4 and we get
GF(q)U{«} as

m,j=m;,=1 for all je GHq), (B10) B A A A A A
A B A —-A —-A A

A A B A —A —-A

m....=0, (B11) Hase=| A A A B A —A

o N A -A -A A B A
m;=x(j—i) for i,jeGHQ). (B12) A A A —A A B

M is symmetric and orthogonal. To get from to a Had- (B14)

amard matrix of order 2(+ 1), we define the auxiliary ma-
tricesA andB by The first value oin=4n where neither the Sylvester nor the

Paley construction applies lm=92.

PR LS B
A= , B= (B13)
1 -1 -1 -1 APPENDIX C: GALLERY OF SHATTERED SETS
and replace every 0 iM by B, every+1 by A, and every For N=<9 the exact values day have been obtained by
—1 by —A. This gives Hadamard matrices of order exhaustive enumerations. Shattered sets of maximum cardi-
12,20,28,36,52, ... . For example=5. GH5) is equiva- nality are
N=3 N=5 N=7 N=9
+++ +++++ e e
——+ —+——+ —+—t—+- +—+—+—+—+
—+- —+—+- ——t+4+——+ ———t+——++
—++—— —++——++ t—tt——t+—
————tt+t+ e ++++
—+—++—+ +—+—t+—+—
—— 4+t ——— ettt

The sets foN=3 andN=5 are obtained from the rows of the Sylvester-type Hadamard midtrix For N= 3, the first
column and the last row has been deleted. Rer5, a column ¢-1,—1,—1,—1) has been adjoined. The sets fo=7 and
N=9 are obtained from the rows of the Sylvester-type Hadamard nmtagrxconfer Eq.(B3). ForN=7, the eighth column
and row have been deleted, and fo=9, a column with alternating-1's has been adjoined.
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The largest shattered sets we could find for the balanced Ising perceptron with binary patterns are

N=9 N=15 N=17
————————— -+ —+— ——t ettt —+—+
—————— +++ —— ettt ——++——+ ottt ——++
———— ettt ——++——++ ettt ——++—
——t++————+ ———— ettt ———+++ Fo——— ettt ————+++ 1+
—t—t—t—+- —t =ttt ——+—F++—+ —— ettt ——F—F++—+—
—t—++—t—— —— o —— e+ +— Fo—tt et ——— ettt +——
—tt——tt—= +4++++++ ——tt—t——t—F+—t+——+

—t—t—t—tt—+—+—+ o ————— ++++++++
—— ettt ——F+— ——t -t —t+—+—
ettt —+——+— Fo—tt——F+++——t++——
——t++t——t++————+ ——t =+ ——+

o —— ettt ————

—— ettt —F——+—+

These pattern sets lead to the lower bounds in 4). The  column from the Sylvester-type Hadamard matx+ and
set forN=9 has been found by exhaustive enumeration andhen the first 13 rows form a shattered pattern Bet;23,
has no simple relation to a Hadamard matrix. The patterngelete the last column from the Hadamard matrix
for N=15 are rows 2—11, 14, and 15 of the Sylvester—typeHZ@HlHl and then the first 17 rows form a shattered pat-

Hadamard matrit ,+ with the last column deleted. The pat- tem setN=27, delete the last column from the Paley-type

- Hadamard matrid 3, 1) and then the first 19 rows form a
terns forN =17 are rows 2—14 dfi,+, extended by a column - gpartered pattern set; aht= 31, delete the last column from

of alternating=1’s. o the Sylvester-type Hadamard mattiks and then the rows
Pattern sets that exceed the bounds given in(E§.can  number 2 to number 25 form a shattered pattern set with 24
be constructed for these valuesif N= 15, delete the last patterns.
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