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Vapnik-Chervonenkis dimension of neural networks with binary weights
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We investigate the Vapnik-Chervonenkis~VC! dimension of the perceptron and simple two-layer networks
such as the committee and the parity machine with weights restricted to values61. For binary inputs, the VC
dimension is determined by atypical pattern sets, i.e., it cannot be found by replica analysis or numerical Monte
Carlo sampling. For small systems, exhaustive enumerations yield exact results. For systems that are too large
for enumerations, number theoretic arguments give lower bounds for the VC dimension. For the Ising percep-
tron, the VC dimension is probably larger thanN/2. @S1063-651X~97!05203-3#

PACS number~s!: 87.10.1e
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I. INTRODUCTION

Presently investigations in different fields including ma
ematical statistics, computer science, and statistical mec
ics aim at a deeper understanding of information proces
in artificial neural networks. Every field has developed
own concepts, which, although related to each other,
naturally not identical. In order to use~and appreciate!
progress made in another field it is hence important to kn
the different concepts and there mutual relation. The Vapn
Chervonenkis~VC! dimension is one of the central quantitie
used in both mathematical statistics and computer scienc
characterize the performance of classifier systems@1,2#. In
the case of feedforward neural networks it establishes c
nections between the storage and generalization abilitie
these systems@3–5#. Unfortunately, for most architecture
the precise value of the VC dimension is not known and o
bounds exist@6#.

The VC dimension was introduced to characterize cer
extremesituations in machine learning. It is therefore ve
useful to derive bounds for the network performance by c
sidering the worst possible case. Complementary invest
tions in statistical mechanics focus on thetypical behavior
described by appropriate averages. In simple situation
provided, e.g., by the spherical perceptron, it turns out t
the typical and worst case behaviors are not dramatic
different @7#. It is then comparatively easy to establish co
nections between results obtained in different fields.

In the present paper we discuss some peculiarities tha
encountered when analyzing the VC dimension of neu
networks with binary weights. Binary weights are the e
treme case of discrete couplings with obvious advantage
biological and technical implementations. It turns out, ho
ever, that in this case the typical and the extreme behavio
the network can be rather different. Therefore, the relat
between results obtained by different approaches is less
vious.

*Electronic address: stephan.mertens@physik.uni-magdeburg
†Electronic address: andreas.engel@physik.uni-magdeburg.d
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Let us also note that in the mathematical literature bin
weights are usually assumed to take on the values 0 an
Physically minded people, on the other hand, prefer the
ues21 and 1 reminescent of spin systems. As we will sho
these two choices make a difference.

The paper is organized as follows. After giving the ba
definitions in the next section we discuss some simple
amples in Sec. III. In Sec. IV we give a short discussion
analytical methods using the replica trick to calculate
behavior of the typical growth function. Section V is devot
to the numerical investigation of the typical growth functio
for the binary perceptron and simple two-layer networks.
Sec. VI we derive bounds for the VC dimension of neu
networks with binary couplings including simple multilaye
systems. The bounds show that the VC dimension is de
mined byatypical situations. The VC dimension hence ca
not be inferred from the properties of the typical grow
function. We give arguments that the value of the VC dime
sion for networks with binary weights may depend
whether the input vectors are continuous, binary (0,1),
binary (21,1). Finally, Sec. VII contains our conclusions.

II. BASIC DEFINITIONS

The VC dimensiond VC is defined via the growth function
D(p). Consider a setX of instancesx and a setC of ~binary!
classificationsc: x→$21,1% that group allxPX into two
classes labeled by 1 and21, respectively. In the case o
feedforward neural networks@8# with N input units and one
output unit,X is the space of all possible input vectorsj
PR or jP$21,11%N, the class is defined by the binar
output s561, andC comprises all mappings that can b
realized by different choices of the couplingsJ and thresh-
oldsu of the network. For any set$xm% of p different inputs
x1, . . . ,xp we determine the numberD(x1, . . . ,xp) of dif-
ferent output vectors$s1 , . . . ,sp% that can be induced by
using all the possible classificationscPC. A pattern set is
called shattered by the class C of classifications if
D(x1, . . . ,xp) equals 2p, the maximal possible number o
different binary classifications ofp inputs. Large values of
D(x1, . . . ,xp) hence roughly correspond to a large divers
e

4478 © 1997 The American Physical Society



s
-
n

ra

.
re
on

t.

ag
lit
r

le

s

k

t
a

e
ks:
g
a
f
ce
t of
le-

th

l
is

is
s a

at
ts
ap-
ame
rary

al

ut

that
has

den

nd

55 4479VAPNIK-CHERVONENKIS DIMENSION OF NEURAL . . .
of mappings contained in the classC. The growth function
D(p) is now defined by

D~p!5max
$xm%

D~x1, . . . ,xp!. ~1!

It is clear thatD(p) cannot decrease withp. Moreover,
for smallp one expects that there is at least one shattered
of sizep and henceD(p)52p. On the other hand, this ex
ponential increase of the growth function is unlikely to co
tinue for all p. The value ofp where it starts to slow down
should give a hint on the complexity of the classC of binary
classifications. In fact, the Sauer lemma@1,9# states that for
all classesC of binary classifications there exists a natu
numberdVC ~which may be infinite! such that

D~p!52p if p<d VC ,

~2!

D~p! < (
i50

d VC S p
i D if p>dVC .

dVC is called the VC dimension of classC. Note that it will,
in general, depend on the setX of instances to be classified
Hence, in the case of neural networks there can be diffe
values ofd VC for the same class of networks depending
whether the input patterns are real or binary vectors.

Due to the max in Eq.~1! it is possible that the VC di-
mension is determined by a single very special pattern se
many situations emphasis is, however, on thetypical proper-
ties of the system. In order to characterize the typical stor
and generalization abilities of a neural network a probabi
measureP on the input setX is introduced. One then asks fo
the properties of thetypical growth functionD typ(p), which
at variance with Eq.~1! is defined as the most probab
value ofD(x1, . . . ,xp) with respect to the measureP. In the
relevant limit of large dimensionN of the input space it is
generally assumed that the distribution ofD(x1, . . . ,xp) is
sharply peaked around this value. In the same limitN→`
methods from statistical mechanics can be used to inve
gate the properties ofD typ(p). This limit is nontrivial if
a5p/N5O(1) and results indVC5O(N). We will call
a VC5limN→ ` dVC /N the VC capacity of the neural networ
@10#. In addition, we may defined VC

typ as the value ofop at
which D typ(p) starts to deviate from 2p and
a VC

typ5limN→ ` d VC
typ/N. The storage thresholdpc is as usual

defined byD typ(pc)/2
pc 51/2 andac5 limN→`pc /N is the

storage capacity.
Using Stirling’s formula in Eq.~2! and replacing the sum

by an integral, one can show that for largeN the relative
deviation of the upper bound from 2p becomesO(1) if
a.2a VC ~see Sec. IV!. Since we always have
D typ(a )< D(a ) this implies

ac<2a VC . ~3!

In this paper we concentrate on three sets of classifiers:
Ising percpetron, the Ising committee tree and the Ising p
ity tree. The Ising perceptron realizes the classification
j °61 via
et
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s5sgnS (
i51

N

Jij i2u D , ~4!

with weight vectorJP$61%N. The perceptron is a prototyp
of what is usually termed single-layer feedforward networ
The N input valuesj i are summed up and the resultin
‘‘field’’ is passed through a nonlinear function to yield
single output values. The computational capabilities o
single-layer feedforward networks are rather limited. Hen
one is interested in multilayer networks, where the outpu
single-layer networks is used as input for another sing
layer network. TheIsing committee machineand theIsing
parity machineare examples of two-layer networks. In bo
machines, the input valuesj i are mapped toK binary values
tk by K Ising perceptrons. Thetk are called the interna
representation of the input. The internal representation
mapped onto the final outputs561 by the so-called de-
coder function in the output layer. The decoder function
different in both machines. The committee-machine use
perceptron with all weights11,

s5sgnS (
k51

K

tkD 5sgnF (
k51

K

sgnS (
i51

N

Ji
~k!j i2u D G , ~5!

where J(n) is the weight vector of the perceptron th
‘‘feeds’’ the kth hidden node. The restriction to all weigh
11 in the output perceptron is not as severe as it may
pear: The storage properties of this architecture are the s
as for a machine where the output perceptron is an arbit
Ising perceptron~see Appendix A!.

The parity machine simply takes the parity of the intern
representation

s5)
k51

K

tk5)
k51

K

sgnS (
i51

N

Ji
~k!j i2u D . ~6!

In general, a hidden node can receive input from all inp
nodes. In this case we haveNK weights to specify. If the
input nodes are distributed among the hidden nodes such
no input node feeds more than one hidden node, the net
a tree structure~see Fig. 1!. For simplicity we will assume
that the input nodes are distributed evenly among the hid
nodes, i.e., each subperceptron hasN/K weights.

FIG. 1. Feedforward two-layer network with tree structure a
nine input nodes, three hidden nodes, and one output node.
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III. SOME SIMPLE EXAMPLES

To begin with let us discuss some simple examples. In
case of the spherical perceptron defined by Eq.~4! but
now with JPR, ( j Jj

25N, the exact resultsdVC5 N 1 1 and
ac52 have been obtained analytically@11#. Moreover, it is
well known that the number of different realizable outp
vectors~dichotomies! is the same for all input pattern sets
general position@11#. Hence the max in Eq.~1! is realized
by almost all possible inputs sets of lengthp and
D typ(a )5D(a ). Furthermore, Eq.~3! is satisfied as equal
ity.

A particular simple pattern set for which the result for t
VC dimension can easily be verified is given by

j05~0,0,0,. . . ,0!,

j15~1,0,0,. . . ,0!,

j25~0,1,0,. . . ,0!, ~7!

•••

jN5~0,0, . . . ,0,1!.

An arbitrary output vector (s0 ,s1 , . . . ,sN) can be realized
for these inputs by usingJj5s j andu52s0/2.

Another interesting example is provided by a percept
~4! for which the couplings are constrained to take the val
Jj5$0,1% only. Using the set of input patterns describ
above but omitting j0, an arbitrary output string
(s1 , . . . ,sN) can be realized by usingJj5(11s j )/2 and
u521/2. ThereforeN<dVC< N11. On the other hand, i
is known that the storage capacity of this perceptron is gi
by ac50.59 @12#. This large difference betweenac and
2a VC is due to the fact that the VC dimension is determin
by a very special pattern set and thatD typ(p) is much smaller
thanD(p). Hence the number of realizable output vectors
no longer the same for all input vectors in general positio

Finally, we consider the so-called Ising perceptron, ag
described by Eq.~4!, but now with the constraintJj561 on
the couplings. Since the couplings used above to show
the pattern set~7! is shattered by a spherical perceptron ful
this constraint it is clear that the VC dimension of the Isi
perceptron is for patternsjPR equal toN11, exactly as for
the spherical perceptron. Foru50 we getdVC5N in both
cases.

For binary input patternsj i561 we transform the pattern
set ~7! according to j i→2j i21. Every output vector
(s0 ,s1 , . . . ,sN) can then be realized by usingJj5s j for
j51, . . . ,N andu52s02( js j . Therefore the VC dimen-
sion is againdVC5N11. However, since much of the inte
est in neural networks with discrete weights is due to th
easy technical implementation it is not consistent to des
an Ising perceptron with a threshold of orderN. More inter-
esting is the determination of the VC dimension of the Is
perceptron without~for N odd! or with a binary threshold
u561 ~for N even! for binary patterns. This is a hard prob
lem ~see Sec. VI!.

We note that the storage capacity of the Ising percep
has been shown to beac50.83@13#. Hence, also in this cas
we haveac,2a VC and the VC dimension is not determine
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by typical pattern sets. We also note that the storage capa
is believed to be the same for binary and Gaussian patt
@13–15#. As we will see in Sec. VI, it is unlikely that this
holds also for the VC dimension.

IV. ANALYTICAL METHODS

Let us fix a particular set$j1, . . . ,j p% of input patterns
fed into a neural network with parametersJ. Different values
of the parameters will result in different output string
$s1, . . . ,sp% and hence the input patterns induce a partit
of the parameter space into different cells labeled by
realized output sequences$sm%. The cells have a certain vol
ume V($sm%), which might be zero if the output string
$sm% cannot be realized. An interesting quantity is the nu
ber of cells of a given size

N~V!5 Tr$sm%d„V2V~$sm%!…, ~8!

which, of course, still depends on the particular set of in
patterns$jm%. It is possible to calculate the typical value o
N(V) for randomly chosen$jm% using multifractal methods
and an interesting variant of the replica trick@16#. This cal-
culation has been explicitly performed for both the spheri
and the Ising perceptron@17,18# and we give in this section a
brief summary of the results relevant for the present pap

For the perceptron~4! ~with u50 for simplicity! we have

V~$sm%!5E dm~J!)
m

u~smJ•jm!, ~9!

where *dm(J)5(2pe)2N/2*) jdJjd(( j Jj
22N) for the

spherical perceptron and*dm(J)522N(Jj561 for the Ising

case. The natural scale ofV for N→` is then 22N and it is
convenient to introducek($sm%)521/N log2V($s

m%) as a
measure for the size of the cells. Similarily, the number
cells is exponential inN and we therefore use

c~k!5
1

N
log2N~k!5

1

N
log2Tr$sm%d„k2k~$sm%!… ~10!

to characterize the cell size distribution. Realizing thatc(k)
is the microcanonical entropy of the spin system$sm% with
HamiltonianNk($sm%) it can be calculated from the fre
energy

f ~b!52
1

bN
log2Tr$sm%2

2bNk~$sm%! ~11!

via Legendre transform

c~k!5min
b

@bk2b f ~b!#. ~12!

From the experience with related systems@19# one expects
f ~and thereforec) to be self-averaging with respect to th
distribution of the input patternsjm. The average off (b)
over the inputs can be performed using the replica tri
Within a special replica symmetric ansatz the calculation
f (b) can be reduced to a saddle-point integral over one~for
the spherical! or two ~for the Ising case! order parameters
which are evaluated numerically@17#.
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Figure 2 shows some of the resulting curves for the Isi
case. Fora50.2 and 0.4 the corresponding curves for th
spherical perceptron are rather similar. The typical cell s
is given byk05arg maxc(k). ThereforeV052-Nk0 coincides
with the typical phase-space volume as calculated by a s
dard Gardner approach@20#. On the other hand, 2Nc(k0) gives
up to exponentially small countributions from other cell siz
the typical total numberD typ of cells as determined for the
spherical perceptron by Cover@11#. From the explicit formu-
las one can show that for the spherical perceptr
c(k0)5a as long ask0,`, i.e., V0.0, and c(k),a if
k05`, i.e.V050.

For the Ising perceptron there is a smallest possible c
size kmax51 where only one coupling remains. Henc
D typ;2Nc(k0) if k0<1 andD typ;2Nc(1) if k0.1. The bor-
derlinek051 is realized fora50.83, the well known value
of ac @13#. The calculation of the curvesc(k) therefore es-
tablishes the connection between the two complementary
proaches by Cover and Gardner to determine the storage
pacity of neural nets.

Since one has direct access to the number of realiza
output sequences it is tempting to use this approach als
calculate the VC dimension analytically. Due to the averag
over the input distribution necessary to accomplish the c
culation we can at most hope to determinea VC

typ in this way.
As discussed above,a VC

typ will only coincide witha VC if the
maximum in Eq.~1! is realized by a typical set of inpu
patterns. To determinea VC

typ we have to find the value ofa at
which the total number of cellsD typ starts to deviate from
2aN. For aVC,a,2aVC an asymptotic analysis of the
bound in Eq.~2! reveals that@8#

2aN2 (
i50

aVCN S aN
i D

2aN →
1

2
erfcFAaN

2 S 2a 21D G . ~13!

FIG. 2. Distribution of cell sizesc(k) in the coupling space of
an Ising perceptron with loading ratiosa50.2,0.4,0.833,1.245
~from left to right!. Inside the region given by the diamonds replic
symmetry holds. The dot marks the divergences of negative m
ments.
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Hence it may happen that the relative deviation is expon
tially small in N. In principle, we are able to detect th
deviation by using thewhole function c(k). However, for
very small and very largek the calculation ofc(k) necessi-
tates replica symmetry breaking@17#, which renders the cal-
culation practically impossible.

But there is another way to get some information
a VC

typ from the c(k) curves. It is clear from Eq.~11! that
f (b) will diverge for allb,0 if some of the cells are empty
i.e., if k($sm%)52`. For a,a VC

typ this is possible only if
the patterns are linearily dependent. For Gaussian patt
the probability for this to happen is zero and therefore
divergence off for b,0 will show up for a,a VC

typ . @For
binary patterns the probability for two identical patterns
22N and f (b) should be divergent forb,0 for all a. This
is, however, not found in the explicit calculation since
keeping only the first two moments of the pattern distributi
in performing the ensemble average one effectively repla
the original distribution by a Gaussian one.# For a.a VC

typ ,
however, there aretypically some empty cells andf (b)
should be divergent for allb,0.

Within the replica symmetric approximation one finds th
divergence of negative moments for both the spherical
the Ising perceptron atb5(a21)/a if a,1 andb502 if
a>1 @17#. This suggestsa VC

typ51 for both cases. For the
spherical perceptron this coincides with the known res
Moreover, the pointb50,a51 belongs to the region of lo
cal stability of the replica symmetric saddle point. For t
Ising case the result must be wrong sincea VC

typ cannot be
larger thanac'0.83. Since also in this case the replica sy
metric saddle point is locally stable atb50,a51, it is very
likely that there is a discontinuous transition to replica sy
metry breaking as typical for this system@13#. It remains to
be seen whether a solution in one step replica symm
breaking can provide a more realistic value ofa VC

typ .
In principle, it is possible, using the same techniques

obtain expressions for the typical growth function of simp
multilayer nets. However, the technical problems will i
crease and replica symmetry breaking is again likely to sh
up. We just note that a related analysis, namely, the cha
terization of the distribution of internal representatio
within the typical Gardner volume, has recently been p
formed @21–23# for the committee machine. From these i
vestigations the storage capacity in the limit of a large nu
ber of hidden units could be obtained.

V. TYPICAL GROWTH FUNCTIONS

The typical growth functionD typ(p) of a classifier system
that is parametrized byN binary variables can be measure
numerically by an algorithm that mixes Monte Carlo met
ods and exact enumeration@24#. The enumeration is require
to determineD(j1, . . . ,j p), the number of different outpu
vectors that are realizable for a given pattern set. To get
number, one has to calculate the output vectors of allN

classifiers. This exponential complexity limits the numeric
calculations to small values ofN.

To getD typ(p), we drawp random unbiased patternsjm

P$61%N and calculateD(j1, . . . ,j p). This is repeated
again and again and the values ofD(j1, . . . ,j p) are aver-

o-
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4482 55STEPHAN MERTENS AND ANDREAS ENGEL
aged to yieldD typ(p). The scale ofD for large N is
O(2N), so we average the logarithm

lnD typ~p! 5 ^ ln@D ~j 1, . . . ,j p!#&$m% . ~14!

Figure 3 showsD typ(p) for the Ising perceptron with bi-
nary patterns. The curves display the expected behav
D typ(p)52p for small p andD typ(p)! 2p for larger values
of p. The transition between these to regimes seems to
come sharper with increasingN, but it is not clear whether
we get a true step function in the limitN→`. The corre-
sponding curves for the committee and the parity tree lo
similar.

As a test we derive the critical storage capacityac from
Fig. 3 by reading off the point whereD typ(p)52p21. Figure
4 showsac vs 1/N for the Ising perceptron and the commit
tee and parity tree withK53 each. The extrapolations to
N5` are in good agreement with the analytical resu
ac50.83 for the Ising perceptron@13#, ac50.92 for the
Ising committee tree withK53 @25#, andac51 for the Ising
parity tree withK>2 @26#.

For the spherical perceptronD($jm%) is known to be the
same for all pattern sets in general position. The inset of F
3 displays that in the case of the Ising perceptron the aver
over the patterns introduces a statistical error that doesnot
tend to zero with increasing number of samples. This impl
that for the Ising perceptron the number of realizable outp
sequences is not the same for all pattern sets in general
sition.

The typical VC dimensiond VC
typ can principally be ob-

tained fromD typ(p) as the number of patterns for which
D typ(p) starts to deviate from 2p. Due to the statistical errors
in D typ(p), a separate evaluation ofd VC

typ is more appropriate.
For this, we calculateD(j1, . . . ,j p) for a random set of
patterns. If equal to 2p, the set is enlarged by another rando
pattern andD($jm%) is calculated again. This step is repeate

FIG. 3. Typical growth function of the Ising perceptron with
binary patterns averaged over 1000 samples. The function is
course only defined at discrete values ofp, but the continuous lines
ease the readability. The inset displays the values forN527 to-
gether with the error bars.
r:

e-

k

s

g.
ge

s
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until the set is no longer shattered. The number of patterns
the set (21) gives a value ford VC

typ . These values are aver-
aged over many random samples. The results are shown
Fig. 5. The dependence ofd VC

typ on N is roughly given by

d VC
typ~N! } H 0.5N ~ Ising perceptron!

0.6N ~committee tree!

0.88N ~parity tree!.

~15!

VI. BOUNDS FOR dVC

The exact value ofdVC for the Ising perceptron with bi-
nary or zero threshold and binary patterns is not known, n
even in the limitN→`. Only bounds can be provided.

An arbitrary set of classifiers that are parametrized byN

of

FIG. 4. Critical storage capacityac deduced fromD typ(p) for
the Ising perceptron, theK53 Ising committee tree, and the
K53 Ising parity tree.

FIG. 5. Numerical values ofd VC
typ(N) for the Ising perceptron,

theK53 Ising committee tree, and theK53 Ising parity tree. The
straight lines between the points are guides to the eye.
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55 4483VAPNIK-CHERVONENKIS DIMENSION OF NEURAL . . .
bits, like the Ising perceptron, cannot produce more th
2N distinct output vectors on any set of input patterns. So
have

dVC~N!<N ~16!

as a general upper bound for ‘‘Ising-like’’ classifiers.
Finding good lower bounds is a bit more tedious. It c

be achieved by explicit construction of shattered sets.
those cases, however, whered VC

typ!dVC , shattered sets with
cardinality greater thand VC

typ are rare and consequently ha
to find by random search.

A. Ising perceptron

For the Ising perceptron it is shown in Appendix A th
dVC is the same forN odd, zero threshold andN21, binary
threshold. Therefore we can safely restrict ourselves to
caseN odd and no threshold.

In Ref. @27# a special pattern set is given that yields

dVC~N! > 1
2 ~N13!. ~17!

Shattered sets with cardinality12 (N13) are not too rare; they
do show up in the statistical algorithm of Sec. V. To get
improved lower bound for general values ofN, we consider
a restricted variant of the Ising perceptron, thebalanced
Ising perceptron where the couplings have minimum ‘‘ma
netization’’:

(
i
Ji561. ~18!

The balanced Ising perceptrons are a subset of the usual
perceptrons, hence any pattern set that is shattered by
former is as well shattered by the latter.

Now let $j1, . . . ,j p% be a shattered set for the balanc
Ising perceptron withN nodes and let$s1 , . . . ,sp% be an
output vector that is realized by the balanced weight vec
J. Going fromN to N12, we definep11 patterns

j̃n5~2,jn,2 !, 1<n<p ~19a!

~19b!

and new couplings

J65~1,J,2 !, J75~2,J,1 !. ~20!

These couplings preserve the output values of the ‘‘o
patterns

sgn~J6j̃n!5sgn~J7j̃n!5sn , 1<n<p, ~21!

while the balance property ensures that both classificat
of the new pattern can be realized:

sgn~J6j̃p11!5sgnS 222(
i51

N

Ji D 521, ~22a!
n
e

n

e

-

ing
the
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’
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sgn~J7j̃p11!5sgnS 22(
i51

N

Ji D 511. ~22b!

Note that bothJ6 and J7 are balanced. This allows us t
apply Eqs.~19! and ~20! recursively to obtain the lowe
bound

dVC~N!> 1
2 ~N12c2 N0!, N>N0 ~23!

for the general Ising perceptron, wherec is given by the
cardinality of a shattered set for thebalancedIsing percep-
tron with N0 nodes.

Now we are left with the problem of finding large sha
tered sets for the balanced Ising perceptron. A partial e
meration ~see below! yields shattered sets with cardinalit
c57,11,13 forN59,15,17. This gives

dVC~N! > H 1
2 ~N15! for N>9

1
2 ~N17! for N>15

1
2 ~N19! for N>17.

~24!

The corresponding shattered sets are listed in Appendix
This sequence of increasing lower bounds indicates

probably limN→`dVC(N)/N . 1
2 .

There is a method that surely finds the largest poss
shattered set, i.e., the exact value ofdVC : exhaustive enu-
merationof all shattered sets. The overwhelming complex
of O(2N

2
) limits this approach to small values ofN, how-

ever. Nevertheless, the results obtained forN<9 are already
quite remarkable@27#:

dVC~3!53, dVC~5!54, d VC~7!57, dVC~9! 5 7.
~25!

Again the corresponding shattered sets are listed in App
dix C. They share a common feature: Using transformati
that do not changeD(p) ~see Appendix C!, they can be
transformed into quasiorthogonal pattern sets, i.e., sets w
the patterns have minimum pairwise overlap

j~m!
•j~n!5H 61, mÞn

N, m5n.
~26!

~Exact orthogonality cannot be achieved forN odd.!
This observation appears reasonable. Consider a shat

set of patterns. The corresponding cells in weight space h
nonzero volumeV($sm%), i.e., each cell contains at least on
weight vectorJ. If we enlarge the shattered set by an ad
tional pattern, each cell must divide in two cells of nonze
volume. This process can be repeated until the first nondi
ible cell appears. If we assume that the divisibility of a c
decreases with its volume, we must look for cell structu
where the volume of the smallest cell is maximized. This
the case forequisizedcells, i.e., for orthogonal patterns~Fig.
6!.

Quasiorthogonal pattern sets can easily be built from
rows of Hadamard matrices~see Appendix B!. These are
4n34n orthogonal matrices with61 entries. To get quasi
orthogonal patterns of odd lengthN, we either cut out one
column (N54n21) or add an arbitrary column
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(N54n11). It is clear that there are many quasiorthogon
pattern sets withp elements that can be constructed from
given Hadamard matrix. Bypartial enumeration, i.e., by
evaluation of some of them, we were able to find shatte
sets that exceed the lower bound given by Eq.~24! for cer-
tain values ofN:

dVC~N!>5
13, N515

17, N523

19, N527

24, N524.

~27!

The corresponding pattern sets are listed in Appen
C. Systems withN.31 were not investigated. Note that th
lower bound fordVC(N531) is larger than the value re
ported in Ref.@27#.

Figure 7 summarizes our results for theN<31. Both the
exact values and the lower bounds provided by Eqs.~24!

and ~24! clearly exceed the maximum valuedVC5 1
2 (N13)

found by the statistical method in Sec. V. The somew
irregular behavior of the lower bounds does not rule ou
more regular sequel of the truedVC(N), including well-
defined asymptotics. However, if the limit limN→`dVC /N ex-
ists, it will probably be larger than 0.5.

B. Committee tree

To get a lower bound fordVC
CT , the VC dimension of the

Ising committee tree with binary patterns, we explicitly co
struct a shattered set based on shattered sets for the
perceptron. Let$tn% be a shattered set of an Ising perceptr
with K nodes and$jm% be a shattered set of theN/K-node
subperceptron. Then we build patternsJm,n for the commit-
tee tree by concatenation

FIG. 6. Spherical perceptron withN52. The four cells in
weight space induced by patternsj1 and j2 are equisized for
v5p/2, i.e., for orthogonal patterns.
l

d

ix
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Jm,n5~t1
njm,t2

njm, . . . ,tk
njm!. ~28!

We prove that the set$Jm,n,1<m<dVC(N/K),1<n
< d VC(K)% is shattered.

Let $sm,n% be a given output sequence of lengt
dVC(K)dVC(N/K). Since the$tn% are shattered, we can al
ways find$Wk

m561%k51
K such that

sm,n5sgnS (
k51

K

Wk
mtk

nD ~29!

for all n and m. Now we choose the couplings in thekth
subperceptron such that

Wk
m5sgnS (

i51

N/K

Ji
~k!j i

mD , k51, . . . ,K. ~30!

This is always possible becausejm is taken from a shattered
set. Combining Eqs.~29! and ~30!, we get

sm,n5sgnS (
k51

K

sgn(
i51

N/K

Ji
~k!tk

nj i
mD , n51, . . . , dVC~K !.

~31!

i.e., the patterns~28! form a shattered set and we find

dVC
CT~N!>dVC~K !dVC~N/K !. ~32!

Note that this lower bound matches the upper boundN
wheneverdVC(K) @dVC(N/K)# meet their upper boundsK
@N/K#. Examples includeK53 or 7 andN521,K57, and
N549.

FIG. 7. VC dimension of the Ising perceptron with binary pa
terns vsN. The circles labeled quasiorthogonal and balanced
lower bounds for the truedVC .
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This lower bound is much larger than the values
d VC
typ found in Sec. V. If we assume thataVC

5lim
N→`

dVC(N)/N is well defined for the Ising perceptron

Eq. ~32! reads

dVC
CT~N!>NaVC

2 , N@ K@ 1. ~33!

C. Parity tree

We follow the same strategy and construct a shattered
from the patterns of a shattered set$j n% of the subpercep-
trons. The first pattern is simply built fromK consecutive
patternsj1,

J05~j1, . . . ,j1!. ~34!

All other patterns differ fromJ0 in only one subpattern

Jm,k5~j1, . . . ,j1,!jm,j1, . . . ,j1)

↑ kth position, ~35!

where k51, . . . ,K and m52, . . . ,dVC(N/K). This set of
k@dVC(N/K)21#11 patterns is shattered.

Proof. Let $s0 ,sk,m% be a given output sequence for o
patterns. We choose the weightsJ(k) in the subperceptron
such that

sgn~J~1!
•j1!5s0 ,

sgn~J~k.1!
•j1!51,

~36!

sgn~J~1!
•jm!5s1,m ,

sgn~J~k.1!
•jm!5s0sk,m

for m52, . . . ,dVC(N/K). This is always possible becaus
$jn% is shattered. With this assignment of weights, the pa
tree maps$J0,Jm,n% to the prescribed output sequence.

Our shattered set provides us with a lower bound for
VC dimension of the parity tree

dVC
PT~N!>K@dVC~N/K !21#11. ~37!

For K51 the parity tree is equivalent to the simple perce
tron and Eq.~37! reduces todVC

PT(N)5dVC(N). If one inserts
the lower bounds fordVC into the right2hand side of
Eq. ~37!, the resulting values are generally larger th
dVC
PT , but the differences are much smaller than for the co
mittee tree, and for some values ofN, d VC

typ even exceeds the
right-hand side of Eq.~37!. We do not know whether
Eq. ~37! is only a bad lower bound or whether the maximu
shattered sets for the parity tree are not as atypical as fo
Ising perceptron and the committee tree.

VII. CONCLUSION

The VC dimension is one of the central quantities to ch
acterize the information processing abilities of feedforwa
neural networks. The determination of the VC dimension
a given network architecture is, however, in general, a n
trivial task.
r

et
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e
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-
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-
d
f
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In the present paper we have shown that even for
simplest feedforward neural networks this task requi
rather sophisticated techniques if both the couplings of
network and the inputs are restricted to binary values61.
This is mainly due to the fact that the VC dimension defin
by a supremum over all pattern sets of given size is de
mined byatypical pattern sets. Consequently, Monte Ca
methods as well as analytical estimates involving pattern
erages do not yield reliable results and one has to reso
exact enumeration techniques. These methods are natu
restricted to small dimensions of the input space, but
results obtained can be used to get lower bounds for the
dimension of larger systems. In some cases, even tig
bounds can be derived from number theoretic arguments

Complementary one could argue thattypicalsituations are
of more interest than the worst case. Accordingly, a typi
VC dimensiond VC

typ has been defined in Sec. II. One alwa
hasd VC

typ< dVC since an average can never be larger than
supremum.

For the Ising perceptron (Ji561) we founddVC5N as
long as the patterns are allowed to take on the value 0,
gardless of whether we use real-valued or$0,1% patterns. If,
however, also the patterns are Ising-like, i.e.,jP$61%N our
numerical results suggest

1
2 ~N13!,dVC~N!,N ~38!

for generalN. For largeN, the VC dimension is presumabl
substantially larger than the typical VC dimensio
d VC
typ(N)} N/2.
Similar results are found for two simple examples

multilayer networks: the committee and the parity tree w
Ising couplings. Here the results are

dVC~K !dVC~N/K !<dVC
CT~N!<N ~39!

for the committee tree and

K@dVC~N/K !21#11<dVC
PT~N!<N ~40!

for the parity tree withK hidden nodes. For the committe
tree we find again thatd VC

typ,dVC . For the parity tree our
data do not allow us to draw the same conclusion, but
may be due to the low quality of the lower bound in Eq.~40!.

We finally note that the growth functionD(p) related to
the VC dimension is used to derive the famous Vapn
Chervonenkis bound for the asymptotic difference betwe
learning and generalization error. This bounds results fr
the analysis of the worst case. It would be interesting
investigate whether a similar bound for thetypical generali-
zation behavior could be obtained fromD typ(p), which, in
general, is much easier to determine.

APPENDIX A: SYMMETRIES

Let $j1, . . . ,j p% be a set of binary61 patterns and
D(j1, . . . ,j p) the number of different output sequenc
(s1 , . . . ,sp) that can be realized by the Ising perceptron
this particular set of patterns.D(j1, . . . ,j p) is invariant un-
der the following transformations on$j1, . . . ,j p%: comple-
ment a whole pattern,jm°2jm; interchange two patterns
jm↔jn; complement one entry in all pattern
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(m51,..., p), j i
m°2j i

m and interchange two entries in a
patterns (m51, . . . ,p), j i

m↔j j
m . Applying these transfor-

mations, we can always achieve that all patterns h
jN

m521.
Now we assume thatN, the number of couplings, is od

and that there is no threshold. LetJ be a weight vector tha
realizes an output sequence (s1 , . . . ,sp) for a pattern with
jN

m521:

sn5sgnS (
i51

N21

Jij i
n2JND , 1<n<p. ~A1!

We use the leftN21 bits ofjn as a pattern set for the Isin
perceptron withN21 input units and a binary thresholdQ.
Identifying Q with JN in Eq. ~A1!, it becomes obvious tha
D(j1, . . . ,j p) is the same in both cases. Hence we m
restrict ourselves to the caseN odd and no threshold to dis
cuss the VC dimension of the Ising perceptron.

Now we consider a two-layer feedforward network wi
K perceptrons~spherical or Ising! operating between inpu
and hidden layer~weight vectorsJ(k) and an Ising perceptron
as decoder function with weight vectorJ(0)). Suppose that a
given output sequence is realized by a weight vector w
some entriesJk

0521 in the decoder perceptron. The outp
sequence is left unchanged if we setJk

0511 and at the same
time complement all weights in thekth subperceptron
J(k)°2J(k). This transformation allows us to realize an
realizable output sequence with allJk

0511. Hence the VC
dimension of the committee machine equals the VC dim
sion of the two-layer perceptron with Ising weights in t
output layer.

APPENDIX B: HADAMARD MATRICES

A Hadamard matrix is anm3m matrix H with 61 en-
tries such that

HHT5mI, ~B1!

whereI is them3m identity matrix. IfH is anm3m Had-
amard matrix, thenm51,m52, orm[0 mod4. The rever-
sal is a famous open question: Is there a Hadamard matr
orderm54n for every positiven? The first open case i
m5428.

If H andH8 are Hadamard matrices of orderm andm8,
respectively, their Kronecker productH^H8 is a Hadamard
matrix of ordermm8. Starting with the 232 Hadamard ma-
trix

H25S 21 21

21 11D , ~B2!

this gives Hadamard matrices of order 4,8,16,. . . ,2n, the
so-calledSylvester-typematrices. For example,
e

y

h
t

-

of

H2351
21 21 21 21 21 21 21 21

21 11 21 11 21 11 21 11

21 21 11 11 21 21 11 11

21 11 11 21 21 11 11 21

21 21 21 21 11 11 11 11

21 11 21 11 11 21 11 21

21 21 11 11 11 11 21 21

21 11 11 21 11 21 21 11

2 .
~B3!

Let q be an odd prime power. Then Hadamard matrices
Paley typecan be constructed for

m5H q11 for q[3 mod4

2~q11! for q[1 mod4.
~B4!

Paley’s construction@28# relies on the properties of finite
Galois fields GF(q) @29#, whereq is an odd prime power,
especially on thequadratic characterx of GF(q), defined by

x~x!5H 0 if x50

11 if xÞ0 is a square

21 otherwise.

~B5!

Then, for anyaÞ0

(
xPGF~q!

x~x!x~x2a!521. ~B6!

To construct a Paley-type matrix forq[3 mod4, we
start with theq3q matrix M5(mi j ) whose rows and col-
umns are indexed by the elements of GF(q):

mi j5H 21 if i5 j

x~ i2 j ! if iÞ j .
~B7!

Hence, by Eq.~B6!

(
jPGF~q!

mhjmi j5H q, h5 i ,

21, hÞ i .
~B8!

Now adjoin one row and one column with all entries11 to
get a Hadamard matrix of orderq11. This gives Hadamard
matrices of order 4,8,12,20,24,28, . . . .

For example,q511. The Galois field GF~11! is equiva-
lent to the integers$0, . . . ,10% together with their addition
and multiplication modulo 11. The squares are 1,4,9,5,3
we get
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H111151
11 11 11 11 11 11 11 11 11 11 11 11

11 21 11 21 11 11 11 21 21 21 11 21

11 21 21 11 21 11 11 11 21 21 21 11

11 11 21 21 11 21 11 11 11 21 21 21

11 21 11 21 21 11 21 11 11 11 21 21

11 21 21 11 21 21 11 21 11 11 11 21

11 21 21 21 11 21 21 11 21 11 11 11

11 11 21 21 21 11 21 21 11 21 11 11

11 11 11 21 21 21 11 21 21 11 21 11

11 11 11 11 21 21 21 11 21 21 11 21

11 21 11 11 11 21 21 21 11 21 21 11

11 11 21 11 11 11 21 21 21 11 21 21

2 . ~B9!
h

-

er

e

y
rdi-
For q[1mod4, the construction starts wit
the (q11)3(q11) matrix M5(mi j ), indexed by
GF(q)ø$`% as

m` j5mj`51 for all jPGF~q!, ~B10!

m``50, ~B11!

mi j5x~ j2 i ! for i , jPGF~q!. ~B12!

M is symmetric and orthogonal. To get fromM to a Had-
amard matrix of order 2(q11), we define the auxiliary ma
tricesA andB by

A5S 1 1

1 21D , B5S 1 21

21 21D ~B13!

and replace every 0 inM by B, every11 by A, and every
21 by 2A. This gives Hadamard matrices of ord
12,20,28,36,52, . . . . For example,q55. GF~5! is equiva-
lent to the integers$0, . . . ,4% and their addition and multi-
plication modulo 5. The squares are 1 and 4 and we get

H2~511!5S B A A A A A

A B A 2A 2A A

A A B A 2A 2A

A 2A A B A 2A

A 2A 2A A B A

A A 2A 2A A B

D .

~B14!

The first value ofm54n where neither the Sylvester nor th
Paley construction applies ism592.

APPENDIX C: GALLERY OF SHATTERED SETS

For N<9 the exact values ofdVC have been obtained b
exhaustive enumerations. Shattered sets of maximum ca
nality are
N53 N55 N57 N59

111 11111 2222222 222222222

221 21221 2121212 121212121

212 21212 2211221 222112211

21122 2112211 121122112

2222111 222221111

2121121 121211212

2211112 222111122

The sets forN53 andN55 are obtained from the rows of the Sylvester-type Hadamard matrixH22. ForN53, the first
column and the last row has been deleted. ForN55, a column (11,21,21,21) has been adjoined. The sets forN57 and
N59 are obtained from the rows of the Sylvester-type Hadamard matrixH23; confer Eq. ~B3!. ForN57, the eighth column
and row have been deleted, and forN59, a column with alternating61’s has been adjoined.
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The largest shattered sets we could find for the balanced Ising perceptron with binary patterns are

N59 N515 N517

222222222 212121212121212 22121212121212121

222222111 221122112211221 12211221122112211

222211221 211221122112211 22112211221122112

221122221 222211112222111 12222111122221111

212121212 212112122121121 22121121221211212

212112122 221111222211112 12211112222111122

211221122 222222221111111 22112122121121221

212121211212121 12222222211111111

221122111122112 22121212112121212

212112121212212 12211221111221122

221111221122221 22112211212211221

12222111111112222

22121121212122121
an
rn
p
t-

rix
at-
pe
a

24
These pattern sets lead to the lower bounds in Eq.~24!. The
set forN59 has been found by exhaustive enumeration
has no simple relation to a Hadamard matrix. The patte
for N515 are rows 2–11, 14, and 15 of the Sylvester-ty
Hadamard matrixH24 with the last column deleted. The pa
terns forN517 are rows 2–14 ofH24, extended by a column
of alternating61’s.

Pattern sets that exceed the bounds given in Eq.~24! can
be constructed for these values ofN: N515, delete the last
ts

ca

1)
d
s
e

column from the Sylvester-type Hadamard matrixH24 and
then the first 13 rows form a shattered pattern set;N523,
delete the last column from the Hadamard mat
H2^H1111 and then the first 17 rows form a shattered p
tern set;N527, delete the last column from the Paley-ty
Hadamard matrixH2(1311) and then the first 19 rows form
shattered pattern set; andN531, delete the last column from
the Sylvester-type Hadamard matrixH25 and then the rows
number 2 to number 25 form a shattered pattern set with
patterns.
,
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