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Abstract. The Vapnik—Chervonenkisv¢) dimension of the Ising perceptron with binary
patterns is calculated by numerical enumerations for system 8izes31. It is significantly
larger than%N. The data suggest that there is probably no well-defined asymptotic behaviour
for N — oc.

The Vapnik—Chervonenkisv€) dimension is one of the central quantities used in both
mathematical statistics and computer science to characterize the performance of classifier
systems [1, 2]. In the case of feed-forward neural networks it establishes connections
between the storage and generalization abilities of these systems [3-5]. In this letter we
will discuss thevc dimension of the Ising perceptron with binary patterns.

The vc dimensiondyc is defined via the growth functiot(p). Consider a set of
instancesx and a systenC of binary classifiers: x — {—1, 1} that group allx € X
into two classes labelled by 1 andl, respectively. For any sdtt*} of p different

instancesx!, ..., x? we determine the numbek(x1, ..., x?) of different classifications
c(xY),...,c(xP) that can be induced by running through all classifierss C. A
set of instances is calledhattered by the systemC if A(xY,...,x?) equals 2, the
maximum possible number of different binary classificationg afistances. Large values
of A(x%, ..., x?) roughly correspond to a large diversity of mappings contained.ifThe
growth functionA(p) is now defined by

Ap) = rr;ng(xl, o xP). (1)

It is obvious thatA (p) cannot decrease with. Moreover, for smallp one expects that
there will be at least one shattered set of gizand henceA(p) = 2P. On the other hand,
this exponential increase in the growth function is unlikely to continue fop allhe value
of p where it starts to slow down gives a hint as to the complexity of the systern
fact the Sauer lemma [1, 6] states that for all systé€msf binary classifiers there exists a
natural numberlyc (which may be infinite) such that

=27 if p<dvc

A(p) dve p 2
< if p>dyc.
; (l) mp VC
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Here dyc is called thevc dimension of the syster@. Note that it will in general depend
on the setX of instances to be classified.

A concrete example for a system of classifiers is given by the well known perceptrons
defined by

N
o= sign(Z J,-g,-) 3)
i=1

where the weightd € RY parameterize the perceptron ahe R” is an instance or pattern
to be classified. The multiplication of by a constant factor does not affect the output
so the weights are usually restricted 3§ = N. For thisspherical perceptrorthe exact
resultdyc = N has been obtained analytically [7].

The Ising perceptronis a spherical perceptron with the additional constraings +1
on the weigths. For real valued patterfiss RV this constraint does not affect the
dimension, i.edyc = N still holds [8].

Since much of the interest in neural networks with discrete weights is due to their easy
technical implementation it is important to consider not only binary weigths but also binary
patternst; = +£1. To avoid problems with the sign function Jf - £ happens to be 0, one
introduces a threshol® = +1 for N even:o = sign(J - £ + ©). Since thevc dimension
for the Ising perceptron witlv = 2n and® = +1 is the same as faN = 2»n + 1 without
threshold, we will consider only odd values &f throughout this letter.

The determination of thec dimension of the Ising perceptron with binary patterns is
a difficult problem. Analytical calculations based on the replica method [9] are not very
helpful, since this method is suited to calculatigpical or averagequantities, whereas the
vc dimension is an extremal concept due to the max in (1). For the spherical perceptron
this difference does not really matter, but for networks with discrete weights it is crucial [8].

To get at least a lower bound falc it suffices to find a large shattered set by a smart
guess. Consider the seV (odd):

é‘(o) — (_l, —:I_7 ceey _ls _l)
eV =(-1,-1,...,-1,+1
@ _ (1 — -
E - ( 1, 17 R} +l’ 1) (4)

XN —(—1, . 1,41, -1,...,—1).

Leto = (oo, ..., G%(NJrl)) be an arbitrary output vector. To see hewcan be realized by
the binary perceptron, we have to distinguish two cases:

First case: o = (00,0, ...,0) i.e. the output values for all patterns excg? are the
same. This output can be realized by the weights

J =(—o0,0y,...,00, —00, ..., —00Q) . (5)
————— S —————

1(N-3) L(N+D)

Second case: For all output vectors different from the first case, we can assert that

1(N+D)

Zm<

i=1

(N—=23) (6)

NI =
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since at least one; in the sum differs from the rest. As weights we choose

J: (_(707 kls "'sk%(N73)’O-;2[(N+l)7 "'»Ul) (7)
wherek can be anyt1 vector with

) v+

Z kl‘:— Z o;.
i=1 i=1

According to equation (6), such a vector can always be found. Again we have
signJ - €M) =0, for u=0,..., (N +1).

This proves that the set (4) is shattered and hence
dvc > 3(N +3) ®)

for the Ising perceptron with binary patterns. This valuedg¢ agrees very well with
numerical results obtained by a statistical enumeration method [10, 8]. For this method,
onerandomly draws p binary patterns and calculates(¢?, ..., £€%’) by enumeration of

all perceptronsJ e {+1}". If a single pattern set witih (. ..) = 27 is found, we know that

dyc > p. Like the replica method, this method is not suited to calculating/thdimension

in cases where the maximum shattered sets are rare.

There is, however, a method that guarantees exact evaluation ofctlttmension:
exhaustive enumeratioof all shattered sets. The shattered pattern sets can be arranged as
the nodes of a tree. The root of the tree is the empty pattern set (conveniently defined to
be shattered). The children of /2 pattern node are formed by all those shatterBdt 1)
pattern sets that can be obtained from the parent by adding a new pattern. The recursive
application of this definition gives the complete tree of all shattered setsvd@déenension
is the height of the tree. It can be measured by a traversal of the complete tree using
standard algorithms.

The branching factor of the tree is(#)), its height is QN), giving an overall
complexity of Q2V*). This exponential complexity limits the reachable si¢every soon
and calls for some tricks to reduce the number of nodes.

Before we can think of reducing the number of nodes, we must ensure that every node,
i.e. every shattered set, is considered only oncex+JApattern can be read as ahbit
integer (identifying—1 with 0), hence we have aorder relation between the patterns.

If we add only patterns to a set which are larger than the current elements of the sets,
uniqueness of the nodes is guaranteed.

The first trick to reduce the number of nodes exploits the symmetry of the problem: a
shattered set remains shattered if we multiply one of its elements, aththentry of all
elements by-1. Therefore we may restrict ourselves to pattern sets where all elements start
with —1: £ = (—1,...) and we can fix the set containing only the patteri, —1,..., —1)
as the root of the tree.

The second trick is of théranch and boundvariety and exploits the fact that we are
not interested in the complete tree but only in its height. Let us assume that we have an
easy-to-calculate upper bound for the maximum height that can be reached from a given
node. If this upper bound turns out to be lower than the maximum height already found
during our traversal, we can safely discontinue exploration of the subtree rooted in this
node!

The binary outputs of a set df patterns can be interpreted Asbit numberc. Iterating
over all 2¥ binary weight vectors of our network, we get Zuch output numbers. If
P < N, some of thec values must appear more than once. Fetlenote the frequency of
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the output valuec. The number of different classifications of this pattern set is given by
the number off, > 0:

2P -1
AEY,.. 8N =) ). ©
c=0

The f.’s have to be calculated at each node to test whether the pattern set is shattered or
not. If

fmin = mcin{fc} (10)

is 0, the pattern set is not shattered (at least one classificati@s not been realized). If
fmin > 0 the pattern set is shattered and we can try to enhance it. Each new pattern can
split an existing classification into two (appending-a to ¢ for some weight vectors and a
+1 for others), i.e. from each classificatiorwe get two new classificationg andc;, with
fe = fe, + fe,. One of the new frequencies is alwags%fc. Therefore we have 16gfmin
as an upper bound for the number of patterns that can be added to a shattered set before
we definitely get a non-shattered set.
This strategy allows us to prune many subtrees. Fet 5, branch and bound reduces
the number of nodes from 77 to 4, fof = 7 from 8389 to 4625.
Even with these tricks, the complexity(@vz) is overwhelming. On an UltraSparc | 170,
exhaustive enumeration fo¥ = 7 takes less than a second. Por= 9, the running time is
6.5 hours! Nevertheless, the results obtainedNok 9 are already quite remarkable. For
N =7, the set

€V = (-1, -1-1,4+1, +1, +1, +1)
€9 = (-1, +1+1, -1, -1, 41, +1)
€ = (=1, +141,+1,+1, -1, 1)
&P = (+1, -14+1, -1, +1, -1, +1) (11)
€9 = (+1, -1+1,+1, -1, +1, -1)
€9 = (+1,+1-1, -1, +1, +1, -1)
€0 = (+1,+1—1,41, -1, -1, +1)

is shattered, hencé,c = 7—the maximum possible value! Together wilhc = 4 for
N =5 anddyc = 7 for N = 9, these results do not allow a decent conjecture for the
general expression. However, partial enumerations for larger valu¥simdicate, thatlyc
is substantially larger than the Va|l%(EN + 3) provided by (4).

The largest shattered sets found by exhaustive and partial enumerations share a common
feature: They can be transformed into quasi-orthogonal sets, i.e. into sets, where the patterns
have minimum pairwise overlap

€0 L g — +1 w#v (12)
N nw=v.

This observation leads to the idea of restricting the enumeration to quasi-orthogonal pattern
sets.

1 Exact orthogonality cannot be achieved férodd.
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To find such pattern sets, the notiontdddamard matricess useful (see, e.g., [11] or
any texbook on combinatorics or coding theory). A Hadamard matrix i& anm matrix
H with £1 entries such that

HH" =ml (13)

wherel is them x m identity matrix. The rows (or columns) of a Hadamard matrix form a
set ofm orthogonal binary patterns. This implies tlhaimust be even, but the whole truth is
more restrictive: IfH is anm x m Hadamard matrix, them = 1, m = 2 orm = 0 mod 4.
The reversal is a famous open question: Is there a Hadamard matrix ofrorgedn for
every positiven? The first open case is = 428.

For special values of: there are rules for constructing Hadamard matrices [12], e.g.:

e m = 2" (Sylvester type);
e m = q + 1 whereq is a prime power ang = 3 mod 4 (Paley type);
e m = 2(q + 1) wheregq is a prime power ang = 1 mod 4 (Paley type).

These rules provide us with Hadamard matrices of sufficient{siZEo get from a
4n x 4n Hadamard matrix to quasi-orthogonal binary patterns we either cut out one column
(N =4n — 1) or add an arbitrary column\ = 4n + 1) and take the rows of the resulting
matrix as patterns. The pattern set (11) is a result of this procedure applied toxtl3e 8
Hadamard matrix{g of Sylvester type:

Hg = H, ® H) ® H» (14)
with
-1 -1
Hy = ( ) . (15)
-1 +1

In (14) ® denotes the usual Kronecker product.
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Figure 1. vc dimension of the Ising perceptron with binary patterns plotted againgk,c = N
is an upper boundjyc = %(N + 3) is a lower bound provided by the set (4).

The restriction to quasi-orthogonal pattern sets allows us to consider larger values of
N, but now the enumeration gives only lower bounds dgog. Results forN < 31 are

T The first value ofn = 4n where none of them applies is = 92.
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displayed in figure 1. The lower bounljc = %(N+3) achieved by the set (4) is exceeded
for all N > 5, but the theoretic upper bounic = N is attained only forN = 7. The
data are not suited for a decent conjecture about a general expressikya fon. Even the
mere existence of a well defined asymptotic behaviouMor> co looks questionable. The
vc dimension seems to be sensitive not only to the size but also to the number-theoretic
properties ofN: We observe a jump idyc(N) at N = 2" — 1, i.e. at values oV where
the corresponding Hadamard matrix is of Sylvester type.

The lower bounds in figure 1 do not rule out the possibility of a much more regular
behaviour of the truel,c(N), including well defined asymptotics. However, if the limit
limy_ o dvc/N exists, it will probably be larger than®

The author appreciates fruitful discussions with A Engel. Thanks are also due to
C Bessenrodt for her reference to Hadamard matrices.
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