
Entropy of pseudo-random-number generators

Stephan Mertens* and Heiko Bauke†

Institut für Theoretische Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany
(Received 19 November 2003; published 21 May 2004)

Since the work of Ferrenberget al. [Phys. Rev. Lett.69, 3382 (1992)] some pseudo-random-number
generators are known to yield wrong results in cluster Monte Carlo simulations. In this contribution the
fundamental mechanism behind this failure is discussed. Almost all random-number generators calculate a new
pseudo-random-numberxi from preceding values,xi = fsxi−1,xi−2, . . . ,xi−qd. Failure of these generators in clus-
ter Monte Carlo simulations and related experiments can be attributed to the low entropy of the production rule
fsd conditioned on the statistics of the input valuesxi−1, . . . ,xi−q. Being a measure only of the arithmetic
operations in the generator rule, the conditional entropy is independent of the lag in the recurrence or the period
of the sequence. In that sense it measures a more profound quality of a random-number generator than
empirical tests with their limited horizon.

DOI: 10.1103/PhysRevE.69.055702 PACS number(s): 05.10.Ln, 02.70.Rr, 75.40.Mg

Random numbers are the key resource of all Monte Carlo
(MC) simulations. They are usually produced by a few lines
of code, a subroutine called pseudo-random-number genera-
tor (PRNG). The termpseudorefers to the fact that these
generators implement adeterministicrecursive formula

xi = fsxi−1,xi−2, . . . ,xi−qd, i . q s1d

to produce a sequencesxid of pseudo-random-numbers
(PRNs). The only true randomness in this sequence is con-
centrated in the choice of the “seed”sx1, . . . ,xqd, a few hun-
dred bits at most. This small amount of randomness is ex-
panded by Eq.(1) to the 1010 or more random numbers that
are consumed by a MC simulation on a present-day com-
puter. Most practitioners have no problems founding their
scientific reputation on something pseudo; they simply trust
some well-established PRNG like everybody else trusts the
subroutine to calculate sinsxd. Every now and then, however,
a popular PRNG is caught producing wrong results, and this
does not always entail its removal from the practitioner’s
toolbox. An infamous example is the lagged Fibonacci gen-
eratorFsp,q, + d, defined by the recursion

xi = xi−p + xi−qmod m s2d

with +P h% , + ,−,3 j. The bitwise exclusive-OR operator%

does not require a mod-operation, hence it is very fast.m is
usually the word size of the computer or a prime close to it.
The choice of the “magic numbers”p and q is based on
theoretical considerations, such as maximizing the period of
the sequence[1]. Fs103,250,% d (also known as R250) has
been introduced into the physics community in 1981[2] as a
very fast and reliable PRNG. In 1992, Ferrenberget al. [3]
reported serious problems with lagged Fibonacci generators
when applied in cluster MC simulations of the two-
dimensional(2D) Ising model with the Wolff algorithm. This
discovery initiated a series of investigations, in the course of

which shortcomings of lagged Fibonacci generators have
been found in various other simulations, such as in simula-
tions based on the Swendsen-Wang algorithm[4], 3D self-
avoiding random walks[5], the Metropolis algorithm on the
Blume-Capel model[6], n-block tests[7], and 2D random
walks [8]. Despite this bad record, lagged Fibonacci genera-
tors kept being recommended as “…good enough for many
applications” [9] or even for large-scale simulations[10].
The RANLUX generator[11], prevalent in high-energy
physics, is based on a modifiedFsp,q,−d enhanced with a
special measure to improve the quality of the random num-
bers: it simply throws away up to 80% of the numbers. Other
advices to amend lagged Fibonacci generators are to use
larger values of the lag such as inFs1393,4423,+ d, or to
increase the number of feedback taps ton.2 [8],

xi = xi−q1
+ xi−q2

+ ¯ + xi−qn
mod m. s3d

Most of these recommendations are based on empirical evi-
dence only, with the throw-away strategy in RANLUX being
a notable exception. But without a theoretical justification
these strategies have the smack of sweeping the dirt under
the carpet. Some authors blame the three-point correlations
induced by Eq.(2) for the problems[6,12]. In fact, choosing
n.2 in Eq. (3) the observed deviations are reduced, but
strange enough, the simple linear congruence generator

xi = axi−1mod m s4d

with a@1 has strong two-point correlations, yet it performs
reasonably in cluster MC simulations. According to Heueret
al. [13] “…the reason why the Wolff algorithm is so sensi-
tive to triplet correlations remains a mystery.” The analysis
of a 1D directed random walk simulation by Shchuret al.
[14,15] shed light on the mechanism behind this failure: the
inability of the PRNG to compensate the persistent bias in
the preceding random numbers which is induced by the
simulation algorithm. In this contribution we will define a
robust, quantitative measure for this inability.

*Email address: stephan.mertens@physik.uni-magdeburg.de
†Email address: heiko.bauke@physik.uni-magdeburg.de

PHYSICAL REVIEW E 69, 055702(R) (2004)

RAPID COMMUNICATIONS

1539-3755/2004/69(5)/055702(5)/$22.50 ©2004 The American Physical Society69 055702-1

The Wolff algorithm [16,17] is a very efficient MC
method to simulate Ising spin systems in thermal equilib-
rium. It flips clusters of spins and its central part is the con-
struction of these clusters. The algorithm maintains a list of
candidate spins. As long as the candidate list is not empty,
one spin is removed from the list and is added to the cluster
with probability Padd=1−e−2/T, whereT is the temperature
measured in unitskB/J. If the spin has been added to the
cluster, its equally aligned neighbor spins are added to the
candidate list(if they are not themselves part of the cluster).
When the candidate list is empty, the growth process stops,
all spins of the cluster are flipped and a new growth process
is initiated by starting a new cluster with a randomly chosen
spin and adding all of its equally aligned neighbors to the
candidate list.

In the cluster growth process, the pseudo-random-
numbersr i =xi /mP f0,1d are used to decide whether a spin
from the candidate list is added to the clustersr i , Paddd or
not sr i ù Paddd. With each spin that is added to the cluster,
new spins may enter the candidate list, too. For the growth
process to stop, the candidate list needs to be empty, hence
we expect the end of each growth process to go hand in hand
with a high rejection rate or a superproportional fraction of
random numbers,r i ù Padd. Each time a cluster is completed
one can look back at the last random numbers
r i−1,r i−2, . . . ,r i−k, . . . andmeasure the bias

gskd =
Psr i−k , Paddd

Padd
, s5d

wherePsr , Pd denotes the probability of the eventr , P.
Unbiased numbers haveg=1, but Fig. 1 shows that the num-
bers that contribute to the completion of a cluster are indeed

strongly biased. For most temperatures the bias is towards
rejection movessg,1d. For low temperatures the cluster
spans almost the entire system, hence the completion is
dominated by a lack of unassigned spins rather than higher
rejection rates. In these cases we observe a weak bias to-
wards acceptance movessg.1d.

Note that the biasg has nothing to do with a faulty
PRNG. It is a genuine property of the simulation algorithm.
However, the PRNG has to cope with this situation: after all
we expect it to generate unbiased random numbersxi even if
the numbersxi−1, . . . ,xi−p in Eq. (1) are biased. The crucial
point is that some PRNGs like the lagged Fibonacci have
problems to reconstruct unbiased pseudo-random-numbers
from biased input. This is most easily seen forFsp,q, % d
and Padd=1/2. Let Pi denote the probability that the most
significant bit ofxi equals 1. In the final phase of the cluster
growth process we havePi−q.1/2 andPi−p.1/2, and from
xi =xi−q % xi−p we getPi ,1/2, i.e., we expect too many spins
to be added to the new cluster.

A simple experiment illustrates the relation between the
persistent bias and the cluster size. We draw two real random
numbersr1 andr2 from a distribution as shown in the inset of
Fig. 1, with biasg,1. These two numbers are used to gen-
erate a new random numberr3 according to the lagged Fi-
bonacci rule. Figure 2 shows the bias ofr3 for all four binary
operators: % leads to a strong biasg.1 (as discussed
above), + and − to a weaker biasg,1, and3 shows no bias
in the new variabler3. This corresponds nicely with the av-
erage cluster size in the Wolff algorithm for simulations of
the square Ising model: with% the clusters are too large and
with ± the clusters are too small. Only the3 operator gen-
erates clusters of the correct size. These results are consistent
with systematic numerical investigations[4].

At this point the virtue of increasing the lag becomes
apparent. An increased lagq usually implies an enlarged dif-
ferenceq−p, which in turn decreases the probability that
bothnumbersxi−p andxi−q are from the completion phase of
a cluster. The bias ofxi is much weaker if only one of its
predecessorsxi−p or xi−q is biased. This is a fragile construc-
tion and may still fail in other contexts. The central weak-
ness, the incapacity to restore unbiased PRNs from biased
inputs, is independent of the lag. The RANLUX approach to

FIG. 1. The completion of a cluster in the Wolff algorithm im-
plies a biasgskd (5) in the preceding random numbersr i−k. The bias
is towards rejection moves, i.e., the probability ofr i−k, Padd (ac-
ceptance) is smaller thanPadd. The inset shows the corresponding
probability density of the random numbersr P f0,1d. The data
shown are from simulations of a 24324 spin square Ising model,
but the figures look similar for larger systems and in 3D.Tc is the
critical temperature of the infinite system.

FIG. 2. Bias in the output of the lagged Fibonacci generator
with biased inputsssd and cluster sizes in the Wolff algorithmshd.
The bias in the input numbers wasg=0.975 andPadd=0.586, cor-
responding to a MC simulation at the critical temperature of the 2D
Ising model. The simulation was done withFs13,33,+ d on a 16
316 spin system. Error bars are smaller than the symbol size. The
reference value of the cluster size has been obtained from simula-
tions with a high quality PRNG[18].

S. MERTENS AND H. BAUKE PHYSICAL REVIEW E69, 055702(R) (2004)

RAPID COMMUNICATIONS

055702-2

throw away subsets of the PRNs helps but requires large
fractions of the stream of PRNs to be ignored[19]. To find a
better remedy it is instructive to consider a tractable model
of a PRNG. Our model PRNG directly generates a stream of
real numbers on the intervalf0,1d via the recursion

r i = hasr i−1 + r i−2 + ¯ + r i−ndj, s6d

wherehrj denotes the fractional part ofr. For a=1, Eq. (6)
corresponds to an additive lagged Fibonacci generator withn
feedback taps. The casen=1 corresponds to the linear con-
gruence generator(4). Now let ri denote the probability den-
sity function ofr i. To understand how Eq.(6) transforms the
probability density we assume that the input values
r i−1, . . . ,r i−n are independent. This holds strictly only for the
first iteration on the initial seed, but it allows us to write

risrd =
1

a
o
j=0

bnac
ri−1 ! ri−2 ! ¯ ! ri−nS r + j

a
D s7d

for 0ø r ,1. bxc denotes the largest integer not larger thanx
and! is the convolution operator. The sum results from tak-
ing the fractional part in Eq.(6). It can be interpreted as
Riemann sum approximation to the integral
eri−1! ¯ !ri−nsxddx=1 with mesh size 1/a, hence we have
the immediate result

lim
a→`

risrd = 1, 0ø r , 1, s8d

i.e., for a→` the new numberr i is uniformly distributed
independentof the distribution of the preceding numbers.
This is what makes the simple linear congruence generator
(4) perform better thanFsp,q, ±d andFsp,q, % d. One of the
numbersxi−q or xi−p that enter the right-hand side of the
multiplicative generatorFsp,q, 3 d can be seen as a multi-
plier for the other. This multiplier varies, but it is@1 for
almost all iterations. This explains whyFsp,q, 3 d works
fine in cluster MC simulations. Fora=1 the support of the
n-fold convolution isf0,nd, and it is sampled with a mesh of
size 1. In the limitn→` we can again replace the sum by an
integral and we get back the uniform distribution forri. For
this reason the quality of lagged Fibonacci generators in-
creases with the number of feedback taps. In terms of com-
putational efficiency a generator with a small number of
feedback taps but a large factora is much better than a
generator witha=1 but a large number of feedback taps.

We have seen that a multipliera.1 or a large numbern
of feedback taps promotes a robust uniformity of the PRNs,
even if the input numbers are nonuniform. A quantitative
measure of this robustness is given by theentropy of the
output value r i, conditioned on the input variables
r i−1, . . . ,r i−q. Of course r i is uniquely determined by
r i−1, . . . ,r i−q hence the entropy is zero, reflecting the deter-
minism in our PRNs. Fortunately MC simulations user i in a
coarse grained manner, to “roll a dice” or to “toss a coin.” In
the Wolff algorithm the(biased) coin shows head with prob-
ability Padd. In general, a PRNG is used for a random choice
out of M of macrostates m1. . . ,mM (the faces of the dice).
Each macrostatemj is represented by a large number ofmi-
crostates, the actual PRNs. The random choice is done by

partitioning the intervalf0,1d into disjoint intervalsI j such
that ø j=1

M I j =f0,1d, and macrostatemj is selected if and only
if r P I j. Under the canonical assumption that the PRNsr are
uniformly distributed, mj is selected with probabilityPj
= uI ju. Obviously a simulation is sensitive only to correlations
in the streammj of macrostates. On the other hand it can
only induce correlations at the macrostate level, and on this
level the conditional entropy can be larger than zero: Eq.(1)
is deterministic at the microstate level, but it can be chaotic
at the macrostate level. Theconditional macrostate entropy
H of a PRNG withn feedback taps reads

H = − o
hmij

Psm1, . . . ,mn+1dlog2

Psm1, . . . ,mn+1d
Psm1, . . . ,mnd

, s9d

wherePsm1, . . . ,mn+1d is the joint probability that the PRNG
selects macrostatemn+1 and itsn input values areunbiased
and independent representatives of the macrostates
m1, . . . ,mn. Note that our definition ofH implies maximum
entropy of then microstates that form the input of the gen-
erator:H gives the uncertainty that the generator can produce
in one iteration, given that we have full knowledge of the
preceding macrostates, but no knowledge of the underlying
microstates. A good generator should have a value close to
the upper bound −o j Pjlog2Pj. Note also thatH is not a
measure of the stream of PRNs that come out of a generator.
It is a measure of the generator rule itself. Hence it is very
different from the entropy used in empirical investigations of
pseudo-random-data[20]. To illustrate this difference con-
sider any empirical test on a finite stream of PRNs. The lagq
of the underlying generator can easily be tuned to increase
the range of the correlations beyond the horizon of the test.
The conditional entropy, being independent from the position
of the feedback taps, is not deceived by these measures. In-
creasing the numberM of macrostate, on the other hand,
every PRNG generator will eventually start to give low en-
tropy values. You had better stay away from the microstate
level to keep the illusion of randomness.

The calculation of theMn+1 probabilities that enter the
definition of H is straightforward. For simple generators it
can be done analytically. As an example considerFsp,q,

FIG. 3. Conditional entropy of the recursionr i =hasr i−p+r i−qdj
for different numbersM of equally weighted macrostates. The mul-
tiplier a must be larger thanM to ensure proper mixing of
microstates.

ENTROPY OF PSEUDO-RANDOM-NUMBER GENERATORS PHYSICAL REVIEW E69, 055702(R) (2004)

RAPID COMMUNICATIONS

055702-3

% d andM =2m equally weighted macrostates: here the mac-
rostate is uniquely determined by them most significant bits
of thexi, and the% operator does not mix these bits with the
ambivalent lower-order bits. HenceH=0 as opposed to the
target valueH=m. This result is independent of the values of
p and q and will be the same for any number of feedback
taps. It is an indicator of a fundamental weakness of all%

recurrences.
For our model PRNG (6) the probabilities

Psm1, . . . ,mn+1d are simple integrals and computingH is
straightforward. Figure 3 showsH for our model PRNG with
two feedback taps. The entropy approaches its maximum as
the multipliera gets larger, and fora.M it is very close to
the maximum. This is easily understood from Eq.(7): the
convolution integral of functions that are constant on inter-
vals of size 1/M is well approximated by a Riemann sum of
mesh size smaller than 1/M. Note thatH is not a strictly

monotonic function ofa. The resonances in Fig. 3 reflect the
fact that even a nonuniform distribution at microstate level
may yield the correct macrostate statistics for a particular set
of weights. According to Fig. 3 even a small factora.1
yields acceptable statistics forM =2 macrostates. Hence we
expect good results in a cluster MC simulation even with a
problematic generator such asFsp,q, ±d if we enhance the
entropy of the latter with a small multipliera. Note that for
PRNGs such asFsp,q, ±d the multiplier must be an odd
integer. Figure 4 shows the quality of cluster MC simulations
of 2D and 3D Ising models withFsp,q, +d plus multiplier:
for a=1 we see strong deviations(which for 2D simulations
have long been known), but for a=3, the deviations are
much weaker, and fora=5 they have basically disappeared.

All numerical simulations were done on our Beowulf
clusterTINA [22]. This work was supported by Deutsche For-
schungsgemeinschaft under Grant No. ME2044/1-1.

[1] D. E. Knuth, The Art of Computer Programming, 3rd ed.
(Addison-Wesley, New York, 1998), Vol. 2.

[2] S. Kirkpatrick and E. Stoll, J. Comput. Phys.40, 517 (1981).
[3] A. M. Ferrenberg, D. Landau, and Y. J. Wong, Phys. Rev. Lett.

69, 3382(1992).
[4] P. D. Coddington, Int. J. Mod. Phys. C5, 547 (1994).
[5] P. Grassberger, Phys. Lett. A181, 43 (1993).
[6] F. Schmid and N. Wilding, Int. J. Mod. Phys. C6, 781(1995).
[7] I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev.

Lett. 73, 2513(1994).
[8] R. M. Ziff, Comput. Phys.12, 385 (1998).
[9] K. Kankaala, T. Ala-Nissila, and I. Vattulainen, Phys. Rev. E

48, R4211(1993).
[10] W. Petersen, Int. J. High Speed Comput.6, 387 (1994).
[11] M. Lüscher, Comput. Phys. Commun.79, 100 (1994).

[12] I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev. E
52, 3205(1995).

[13] A. Heuer, B. Dünweg, and A. M. Ferrenberg, Comput. Phys.
Commun. 103, 1 (1997).

[14] L. Shchur, J. Heringa, and H. Blöte, Physica A 241(1997).
[15] L. N. Shchur, Comput. Phys. Commun.121, 83 (1999).
[16] U. Wolff, Phys. Rev. Lett.63, 361 (1989).
[17] M. Newmann and G. Barkema,Monte Carlo Methods in Sta-

tistical Physics(Clarendon Press, Oxford, 1999).
[18] H. Bauke and S. Mertens(unpublished).
[19] L. N. Shchur and P. Butera, Int. J. Mod. Phys. C9, 607(1998).
[20] P. L’Ecuyer, J. Cordeau, and A. Compagner, http://

www.iro.umontreal.ca/;lecuyer/papers.html.
[21] A. E. Ferdinand and M. E. Fisher, Phys. Rev.185, 832(1969).
[22] See TINA, http://tina.nat.uni-magdeburg.de

FIG. 4. MC simulation of a 63636 spin Ising model with the Wolff algorithm andr i =asr i−13+r i−33dmod 231 as PRNG. Grayscales
indicate the deviation from reference values for the energyE and the specific heatc. These reference values have been obtained from
simulations with a high quality PRNG[18]. Corresponding simulations with 2D systems yield similar results. For 2D systems, referrence
values of energy and specific heat can be calculted exactly[21].

S. MERTENS AND H. BAUKE PHYSICAL REVIEW E69, 055702(R) (2004)

RAPID COMMUNICATIONS

055702-4

