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Entropy of pseudo-random-number generators
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Since the work of Ferrenbergt al. [Phys. Rev. Lett.69, 3382 (1992] some pseudo-random-number
generators are known to yield wrong results in cluster Monte Carlo simulations. In this contribution the
fundamental mechanism behind this failure is discussed. Almost all random-number generators calculate a new
pseudo-random-numbey from preceding values;=f(x_1,%2, ... ,Xi_¢). Failure of these generators in clus-
ter Monte Carlo simulations and related experiments can be attributed to the low entropy of the production rule
f() conditioned on the statistics of the input valugs,, ... x_q. Being a measure only of the arithmetic
operations in the generator rule, the conditional entropy is independent of the lag in the recurrence or the period
of the sequence. In that sense it measures a more profound quality of a random-number generator than
empirical tests with their limited horizon.
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Random numbers are the key resource of all Monte Carlevhich shortcomings of lagged Fibonacci generators have
(MC) simulations. They are usually produced by a few linesbeen found in various other simulations, such as in simula-
of code, a subroutine called pseudo-random-number generéiens based on the Swendsen-Wang algorifdin 3D self-
tor (PRNG. The termpseudorefers to the fact that these avoiding random walk§5], the Metropolis algorithm on the
generators implement @eterministicrecursive formula Blume-Capel mode|6], n-block tests[7], and 2D random
walks [8]. Despite this bad record, lagged Fibonacci genera-
tors kept being recommended as.fjood enough for many

to produce a sequencéx) of pseudo-random-numbers applications”[9] or even for large-scale simulatiorja0].
(PRNS. The only true randomness in this sequence is conJhe RANLUX generator[11], prevalent in high-energy
centrated in the choice of the “seek;, ... %), a few hun- ~ Physics, is based on a modifiédp,q,-) enhanced with a
dred bits at most. This small amount of randomness is exSPecial measure to improve the quality of the random num-
panded by Eq(1) to the 18° or more random numbers that berg: it simply throws away up to 80% of the numbers. Other
are consumed by a MC simulation on a present-day comadvices to amend lagged Fibonacci generators are to use
puter. Most practitioners have no problems founding theifarger values of the lag such as #(1393,4423¢), or to
scientific reputation on something pseudo; they simply trustncrease the number of feedback tapsite2 [8],

some well-established PRNG like everybody else trusts the

subroutine to calculate gix). Every now and then, however, Xi = Xi—q, © Xi-q,° *** ©Xi—g,Mod m. 3

a popular PRNG is caught producing wrong results, and this

does not always entail its removal from the practitioner'sy;ost of these recommendations are based on empirical evi-
toolbox. An infamogs example is the _Iagged Fibonacci gengence only, with the throw-away strategy in RANLUX being
eratorF(p,q, ), defined by the recursion a notable exception. But without a theoretical justification
) these strategies have the smack of sweeping the dirt under
the carpet. Some authors blame the three-point correlations
with e e {®, +,—, X }. The bitwise exclusiver operator®  induced by Eq(2) for the problemg6,12. In fact, choosing
does not require a mod-operation, hence it is very fass  n>2 in Eq. (3) the observed deviations are reduced, but
usually the word size of the computer or a prime close to itstrange enough, the simple linear congruence generator
The choice of the “magic nhumbergd and g is based on
theoretical considerations, such as maximizing the period of % = aX_;modm (4)
the sequencgl]. F(103,250 @) (also known as R250has
been introduced into the physics community in 198]las a
very fast and reliable PRNG. In 1992, Ferrenbetel. [3]
reported serious problems with lagged Fibonacci generato
when applied in cluster MC simulations of the two-
dimensional2D) Ising model with the Wolff algorithm. This
discovery initiated a series of investigations, in the course o

X = f(Xi—lixi—Zi s 1Xi—q)= i> q (l)

X = Xi_p° Xi_gmod m

with a>1 has strong two-point correlations, yet it performs
reasonably in cluster MC simulations. According to Heeter
2. [13] “...the reason why the Wolff algorithm is so sensi-
tive to triplet correlations remains a mystery.” The analysis
f a 1D directed random walk simulation by Shchetral.
14,15 shed light on the mechanism behind this failure: the
inability of the PRNG to compensate the persistent bias in
the preceding random numbers which is induced by the
*Email address: stephan.mertens@physik.uni-magdeburg.de  simulation algorithm. In this contribution we will define a
"Email address: heiko.bauke@physik.uni-magdeburg.de robust, quantitative measure for this inability.
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FIG. 2. Bias in the output of the lagged Fibonacci generator
with biased input$O) and cluster sizes in the Wolff algorith(a).
The bias in the input numbers was0.975 andP,44~0.586, cor-
responding to a MC simulation at the critical temperature of the 2D
Ising model. The simulation was done wit(13,33,) on a 16
X 16 spin system. Error bars are smaller than the symbol size. The
100 reference value of the cluster size has been obtained from simula-
tions with a high quality PRNG18].

_FIG. 1. The completion of a cluster in the Wolff algorithm im-  syrongly biased. For most temperatures the bias is towards
plies a biasy(k) (5) in the preceding random numbegs,. The bias  rejection moves(y<1). For low temperatures the cluster
is towards rejection moves, i.e., the probabilityrofy<Pagq (aC-  gpans almost the entire system, hence the completion is
ceptanceis smaller thanP,44 The inset shows the corresponding dominated by a lack of unassigned spins rather than higher
probability density of the random numbers=[0,1). The data  |gjaction rates. In these cases we observe a weak bias to-
shown are from simulations of a 2424 spin square Ising model, wards acceptance movég>1).
bqt_ the figures look similar_ fqr _Iarger systems and in 3Ris the Note that the biasy has nothing to do with a faulty
critical temperature of the infinite system. PRNG. It is a genuine property of the simulation algorithm.

However, the PRNG has to cope with this situation: after all

The Wolff algorithm [16,17 is a very efficient MC  we expect it to generate unbiased random numkessen if
method to simulate Ising spin systems in thermal equilibthe numbers¢_q, ... Xi-p in Eq. (1) are biased. The crucial
rium. It flips clusters of spins and its central part is the con-point is that some PRNGs like the lagged Fibonacci have
struction of these clusters. The algorithm maintains a list Obroblems to reconstruct unbiased pseudo-random-numbers
candidate spins. As long as the candidate list is not emptyfrom biased input. This is most easily seen féip,q, @)
one spin is removed from the list and is added to the clustegng P.a=1/2. Let P, denote the probability that the most
with probability P,4=1-€7?", whereT is the temperature sjgnificant bit ofx, equals 1. In the final phase of the cluster
measured in unit&g/J. If the spin has been added to the growth process we hawe_,>1/2 andP;_,>1/2, and from
cluster, its equally aligned neighbor spins are added to thgizxi_q@xi_p we getP,<1/2, i.e., we expect too many spins
candidate lis{if they are not themselves part of the cluster tg pe added to the new cluster.

When the candidate list is empty, the growth process stops, A simple experiment illustrates the relation between the
all spins of the cluster are flipped and a new growth procespersistent bias and the cluster size. We draw two real random
is initiated by starting a new cluster with a randomly chosemumbers; andr, from a distribution as shown in the inset of
spin and adding all of its equally aligned neighbors to therig. 1, with biasy< 1. These two numbers are used to gen-
candidate list. erate a new random numbey according to the lagged Fi-

In the cluster growth process, the pseudo-randomponacci rule. Figure 2 shows the biasrgfor all four binary
numbersr;=x;/me[0,1) are used to decide whether a spin gperators: @ leads to a strong biag>1 (as discussed
from the candidate list is added to the clustg<P,qd Or  above, + and - to a weaker biag< 1, andx shows no bias
not (r;=P,q9. With each spin that is added to the cluster,in the new variable . This corresponds nicely with the av-
new spins may enter the candidate list, too. For the growtlerage cluster size in the Wolff algorithm for simulations of
process to stop, the candidate list needs to be empty, hentlee square Ising model: witl the clusters are too large and
we expect the end of each growth process to go hand in hanglith + the clusters are too small. Only the operator gen-
with a high rejection rate or a superproportional fraction oferates clusters of the correct size. These results are consistent
random numbers; = P44 Each time a cluster is completed with systematic numerical investigatiof4)].
one can look back at the last random numbers At this point the virtue of increasing the lag becomes
Fic1,Fi=2, .-« »fi—k, - .. andmeasure the bias apparent. An increased lagusually implies an enlarged dif-
ferenceq—p, which in turn decreases the probability that
both numbersx;_, andx;_, are from the completion phase of
a cluster. The bias of; is much weaker if only one of its
predecessors._, or X is biased. This is a fragile construc-
where P(r <P) denotes the probability of the event<P.  tion and may still fail in other contexts. The central weak-
Unbiased numbers hawe=1, but Fig. 1 shows that the num- ness, the incapacity to restore unbiased PRNs from biased
bers that contribute to the completion of a cluster are indeethputs, is independent of the lag. The RANLUX approach to
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throw away subsets of the PRNs helps but requires larg
fractions of the stream of PRNs to be ignofdd]. To find a

better remedy it is instructive to consider a tractable mode
of a PRNG. Our model PRNG directly generates a stream ¢

real numbers on the intervfd, 1) via the recursion

+ ri—n)}! (6)

where{r} denotes the fractional part of For =1, Eq.(6)
corresponds to an additive lagged Fibonacci generatorrwith
feedback taps. The case=1 corresponds to the linear con-
gruence generat@d). Now let p; denote the probability den-
sity function ofr;. To understand how E6) transforms the

ri={a(ri_g+ri+ -
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probability density we assume that the input values

Fi-1, - .- fi—n are independent. This holds strictly only for the
first iteration on the initial seed, but it allows us to write

ol

for 0<r < 1.|x] denotes the largest integer not larger tixan
andx is the convolution operator. The sum results from tak-
ing the fractional part in Eq(6). It can be interpreted as
Riemann  sum  approximation to the integral
Jpi_i* - xpi_,(X)dx=1 with mesh size 1d, hence we have
the immediate result

[na]

> Pi-1* pi-2* "
j=0

r+j

o

pi(r)=— (7)
a

lim pi(r) =1,

a—0

0osr<1,

(8

i.e., for «—o0 the new number; is uniformly distributed
independenbf the distribution of the preceding numbers.

This is what makes the simple linear congruence generator

(4) perform better thafr(p,q, +) andF(p,q, ®). One of the
numbersx;_q or X, that enter the right-hand side of the
multiplicative generatoi(p,q, X) can be seen as a multi-
plier for the other. This multiplier varies, but it &1 for
almost all iterations. This explains why(p,q, X) works
fine in cluster MC simulations. For=1 the support of the
n-fold convolution is[0,n), and it is sampled with a mesh of

FIG. 3. Conditional entropy of the recursiof={a(ri_p+ri_¢)}
for different numberdv of equally weighted macrostates. The mul-
tiplier @ must be larger tharM to ensure proper mixing of
microstates.

partitioning the interva[0, 1) into disjoint intervalsl; such
that Uj’vlllj:[o,l), and macrostaten, is selected if and only

if r e 1. Under the canonical assumption that the PRMse
uniformly distributed, m; is selected with probabilityP;
=|lj|. Obviously a simulation is sensitive only to correlations
in the streamm; of macrostates. On the other hand it can
only induce correlations at the macrostate level, and on this
level the conditional entropy can be larger than zero:(Ey.

is deterministic at the microstate level, but it can be chaotic
at the macrostate level. Trenditional macrostate entropy
H of a PRNG withn feedback taps reads

P(my, ... M)
H=-> P(m, ... M.)logy————————,  (9)
i ! U2 p(my, ... my)
whereP(my, ...,m,,) is the joint probability that the PRNG

selects macrostate,,,; and itsn input values arainbiased
and independent representatives of the macrostates
my, ...,m,. Note that our definition o implies maximum
entropy of then microstates that form the input of the gen-

size 1. In the limitn—  we can again replace the sum by an erator:H gives the uncertainty that the generator can produce
integral and we get back the uniform distribution fgr For  in one iteration, given that we have full knowledge of the
this reason the quality of lagged Fibonacci generators inpreceding macrostates, but no knowledge of the underlying
creases with the number of feedback taps. In terms of commicrostates. A good generator should have a value close to
putational efficiency a generator with a small number ofthe upper bound X; Pjlog,P;. Note also thatH is not a
feedback taps but a large factaris much better than a measure of the stream of PRNs that come out of a generator.

generator withe=1 but a large number of feedback taps.
We have seen that a multiplier>1 or a large numben

of feedback taps promotes a robust uniformity of the PRNs
even if the input numbers are nonuniform. A quantitative
measure of this robustness is given by #mw@ropy of the
output value r;, conditioned on the input variables
Ficgy .- Of course r; is uniquely determined by
M1, ..
minism in our PRNs. Fortunately MC simulations usén a
coarse grained manner, to “roll a dice” or to “toss a coin.” In
the Wolff algorithm the(biased coin shows head with prob-

. ,ri_q.

It is a measure of the generator rule itself. Hence it is very
different from the entropy used in empirical investigations of
pseudo-random-datg20]. To illustrate this difference con-
sider any empirical test on a finite stream of PRNs. Theglag
of the underlying generator can easily be tuned to increase
the range of the correlations beyond the horizon of the test.
The conditional entropy, being independent from the position

..fi_q hence the entropy is zero, reflecting the deter-of the feedback taps, is not deceived by these measures. In-

creasing the numbek of macrostate, on the other hand,
every PRNG generator will eventually start to give low en-
tropy values. You had better stay away from the microstate

ability P44 In general, a PRNG is used for a random choicelevel to keep the illusion of randomness.

out of M of macrostates m..,my, (the faces of the dige
Each macrostatay is represented by a large numberroi

The calculation of theM™?! probabilities that enter the
definition of H is straightforward. For simple generators it

crostates the actual PRNs. The random choice is done bycan be done analytically. As an example consiBép,q,
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FIG. 4. MC simulation of a & 6 6 spin Ising model with the Wolff algorithm ang=a(r;_;3+ri_szmod 2! as PRNG. Grayscales
indicate the deviation from reference values for the endtggnd the specific heat. These reference values have been obtained from
simulations with a high quality PRNEL8]. Corresponding simulations with 2D systems yield similar results. For 2D systems, referrence
values of energy and specific heat can be calculted exgztly

@) andM=2" equally weighted macrostates: here the mac-monotonic function ofx. The resonances in Fig. 3 reflect the
rostate is uniquely determined by themost significant bits  fact that even a nonuniform distribution at microstate level
of thex;, and the® operator does not mix these bits with the may Yield the correct macrostate statistics for a particular set
ambivalent lower-order bits. Hend¢=0 as opposed to the Of weights. According to Fig. 3 even a small facter-1
target valueH=m. This result is independent of the values of Yields acceptable statistics f#=2 macrostates. Hence we
p and q and will be the same for any number of feedback€XPect good results in a cluster MC simulation even with a
taps. It is an indicator of a fundamental weakness ofsall Problematic generator such &sp,q, ) if we enhance the
recurrences. entropy of the latter with a small multipliet. Note that for
For our model PRNG (6) the probabilities PRNGs such a$(p,q,+) the multiplier must be an odd
P(m, m,.,) are simple integrals and computirtd is integer. Figure 4 shows the quality of cluster MC simulations
v e ilint

straightforward. Figure 3 shows for our model PRNG with of 2D and 3D Ising models witl(p,g, +) plus muiltiplier:

two feedback taps. The entropy approaches its maximum aL ra=1we see strong dEVIatIOIG\‘BII’lICh for 2D s!m_ulatlons
- o ave long been known but for a=3, the deviations are
the multiplier « gets larger, and fow> M it is very close to

the maximum. This is easily understood from E@): the much weaker, and fotr=5 they have basically disappeared.

convolution integral of functions that are constant on inter- All numerical simulations were done on our Beowulf
vals of size 1M is well approximated by a Riemann sum of clusterTiNna [22]. This work was supported by Deutsche For-
mesh size smaller than W. Note thatH is not a strictly =~ schungsgemeinschaft under Grant No. ME2044/1-1.
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