
1149

0022-4715/04/0200-1149/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 114, Nos. 3/4, February 2004 (© 2004)

Pseudo Random Coins Show More Heads Than Tails

Heiko Bauke1 and Stephan Mertens1, 2

1 Institut für Theoretische Physik, Otto-von-Guericke-Universität, Postfach 4120, 39016
Magdeburg, Germany; e-mail: {heiko.bauke, stephan.mertens}@physik.uni-magdeburg.de

2 The Abdus Salam International Centre for Theoretical Physics, St. Costiera 11, 34100
Trieste, Italy.

Received June 8, 2003; accepted August 20, 2003

Tossing a coin is the most elementary Monte-Carlo experiment. In a computer
the coin is replaced by a pseudo random number generator. It can be shown
analytically and by exact enumerations that popular random number generators
are not capable of imitating a fair coin: pseudo random coins show more
‘‘heads’’ than ‘‘tails.’’ This bias explains the empirically observed failure of some
random number generators in random walk experiments. It can be traced down
to the special role of the value zero in the algebra of finite fields.

KEY WORDS: Random number generator; Monte-Carlo simulation; random
walk; shift register sequences.

1. MANUFACTURING RANDOMNESS

‘‘After 40 years of development, one might think that the making of
random numbers would be a mature and trouble-free technology, but it
seems the creation of unpredictability is ever unpredictable.’’ These words,
written ten years ago by Brian Hayes, (9) allude to the ‘‘Ferrenberg affair:’’
In 1992, Ferrenberg, Landau, and Wong (4) had shown that a well estab-
lished family of pseudo random number generators produces wrong results
in Monte-Carlo simulations based on the Wolff algorithm. Since then,
deficiencies in pseudo random number generators have been detected in
various other simulations, like simulations with the Swendsen–Wang
algorithm, (1) 3d self avoiding random walks, (7) the Metropolis algorithm on
the Blume–Capel model (17) and 2d random walks. (18, 19) Certainly this list is
incomplete (see the references in ref. 19), but the message is clear: Hayes’

quote is still up-to-date. As long as the generation of random numbers is
more an art than a science, the whole Monte-Carlo method, indispensable
tool in fields ranging from high-energy physics to economics, is based on
shaky grounds. One crucial step on the way from art to science is a precise
understanding of the mechanism behind the failures of pseudo random
number generators in simulations. Explaining these failures is not as easy
as detecting them, however. The 1992 ‘‘Ferrenberg affair’’ for example has
been resolved only recently. (16)

In this contribution we address the issue of why some pseudo random
number generators lead to inconsistent results in random walk simula-
tions. (7, 18, 19) A random walker in a lattice basically throws a coin to decide
to go north or south, east or west, up or down. In d dimensions, d flips of a
coin fix the next step of the walker. Adding reflecting or absorbing
boundary conditions, a memory (self avoiding walks) or a site-dependent
bias of the coin makes the walk more interesting but less transparent.
Obviously a random number generator that is not capable of imitating a
fair coin cannot work properly in more complex random walk experiments.
Thus the basic question is: how well can a pseudo random number genera-
tor approximate a Bernoulli- 1

2 process? This question is simple enough to be
thoroughly analyzed, and the answer is somewhat surprising. The popular
random number generators based on arithmetic modulo 2 are very bad
approximations of a Bernoulli- 1

2 process: Pseudo random coins produce
more ‘‘heads’’ than ‘‘tails.’’ This can be shown analytically. The problems
arise because of the special role of the zero in the arithmetic of finite fields.
Random number generators that avoid (or ignore) the zeros are much
better representatives of a Bernoulli- 1

2 process, in fact they are even better
than real, physical coins. (5)

This work was motivated by an exercise in Donald Knuth’s seminal
treatise on random number generators (see ref. 12, Exercise 3.3.2.31), and
we start by repeating the experiment proposed in this exercise: We measure
the probability that a run of length w (w odd) contains more ‘‘heads’’ than
‘‘tails’’ when produced by a recurrence relation in Z2. Surprisingly this
probability is almost never even close to 1

2 ! We explain how this probability
can be calculated analytically using generating functions, and we demon-
strate that the bias can be decreased, but not be removed by tinkering with
the recurrence relation. It is a genuine feature of the arithmetic in Z2, or
more precisely of the special properties of the zero element in finite fields.
In Z2, the zero element is essential, but already in Z3 it can be circumvented
to generate runs of ‘‘heads’’ and ‘‘tails’’ that are perfectly balanced. Last
but not least we discuss how the empirically observed failure of random
number generators in random walk experiments can be understood quanti-
tatively.

1150 Bauke and Mertens

2. PSEUDO RANDOM COINS

Almost all random number generators follow the same principle: they
calculate a new random number from a subset of the previous numbers,
i.e., they implement a recurrence

xk=f(xk − 1, xk − 2,..., xk − p) (1)

to generate a sequence (xk) of pseudo random numbers. For a practical
algorithm the numbers xk are from a finite domain, and without loss of
generality we can assume that this domain is a finite field. For simplicity we
take this field to be Zm, the numbers 0, 1,..., m − 1 with multiplication and
addition modulo m. Zm is a field if and only if m is prime. Now any perio-
dic (or ultimately periodic) sequence over a finite field can be written as a
linear recurrence, (10) which in our case reads

xk=a1xk − 1+a2xk − 2+ · · · +apxk − p mod m. (2)

For a ‘‘random coin generator’’ it is natural to choose m=2, with 0 denot-
ing ‘‘head’’ and 1 denoting ‘‘tail.’’ The coefficients ak then are either 0 or 1,
and a particularly simple recurrence has only two feedback taps

xk=xk − p+xk − q mod 2 k > p > q, (3)

also known as linear feedback shift register (LFSR) sequence or R(p, q)
generator. Note that addition modulo 2 is equivalent to the exclusive-or
operation, hence (3) can be applied bitwise to multi-bit words to generate a
stream of integers x. Since the single bits of these integers do not interact
we will discuss the one-bit version xk ¥ Z2 without too much loss of gener-
ality. Pseudo random number generators based on (3) have been intro-
duced into the physics community in 1981 (11) as a very fast and reliable
method, but they were proposed already in the 1950s. (8) The sequence (3) is
periodic, but if p and q are chosen such that the so called feedback poly-
nomial

xp − xq − 1 (4)

is primitive modulo 2, the R(p, q) generator attains the maximum period
T=2p − 1. (6, 10)

From a fair coin we expect to see 0 and 1 with equal probability 1
2 ,

doublets (0, 0), (0, 1), (1, 0), and (1, 1) should each appear with probabil-
ity 1

4 and so on. In general, each possible tuple (x1,..., xw) of size w should
appear with probability 2−w. For an LFSR sequence with primitive feed-
back polynomial one can prove that each possible tuple of size w occurs

Pseudo Random Coins Show More Heads Than Tails 1151

2p − w times per period for w [p, except the all zero tuple which occurs
2p − w − 1 times. This is very close to the statistics of tuples in true random
sequences, and this is why LFSR sequences with primitive feedback poly-
nomial qualify as pseudo noise sequences. (6, 10) In terms of Compagner’s
ensemble theory, (2, 3) tuples of size equal or less than p drawn from a
pseudo noise sequence are indistinguishable from true random tuples.

For tuples larger than the register length p the equidistribution can no
longer hold, however. The first p bits of the sequence (3) determine the
whole sequence, hence we have at most 2p different tuples of any size in our
sequence, i.e., only an exponential small fraction of all possible w-tuples
actually occurs in LFSR sequences if w > p. An obvious example of a
missing tuple is a run of p+1 successive ones. Such impossible tuples are
inevitable as long as the random number generator is a finite state auto-
maton, but it is not obvious whether these missing tuples do affect a simu-
lation.

Most applications rely on more global properties of the bit sequence
and are not sensitive to the absence or presence of specific patterns of bits.
The classical example is the random walk, where the random bits are used
to decide which direction to go in the next step. For walks in one dimen-
sion it is only the total number of ones vs. zeros in w-tuples that determine
the position of the walker after w steps. So let us look at the most coarse
grained measure in our coin experiment: the probability P0(w) that after an
odd number w of flips of a coin we have more ‘‘heads’’ (1) than ‘‘tails’’ (0).
P0(w)=1

2 for a fair coin, and for pseudo noise sequences we have

P0(w)=
2p − 1 − 1
2p − 1

=
1
2

−O(2−p) for w [p. (5)

The deviations from 1
2 are due to the missing all zero tuple, but they can

safely be neglected for the values of p that are used in practical random
number generators (p \ 250). The question is whether P0(w) stays near the
1
2 for larger values of w or not.

Figure 1 shows P0(w) for w ranging over the whole period of pseudo
noise sequences with p=17 and q ¥ {3, 5, 6}. The deviations from 1

2 are
striking. Tuples of a pseudo noise sequences R(17, 5) of sizes around
26,000 (about one fifth of the period), for example, have a probability of
less than 0.27 to contain more zeros than ones. One might object that these
large deviations only appear for tuples that span substantial fractions of
the whole period and that this regime is never sampled in simulations that
use large values of p. This might hold for the extreme deviations, but P0(w)
differs significantly from 1

2 as soon as w > p, as can be seen from the inset in

1152 Bauke and Mertens

0 2
14

2
15

2
16

2
17

w

0.30

0.40

0.50

0.60

0.70

P
0
(w)

R(17,3)
R(17,5)
R(17,6)

0 200 400 600 800 1000
0.4

0.5

Fig. 1. Probability that a w-tuple (w odd) of successive bits contains more zeros than ones
for different pseudo random number generators R(p, q) with register length p=17.

Fig. 1. Below we will calculate P0(w) for small w and arbitrary p to dem-
onstrate that this disturbing bias is present for all values of p.

The bias in P0(w) can be attributed to the clustering of zeros: Eq. (3)
maps a block of zeros somewhere in the tuple to another block of zeros in
the tuple. Hence we expect a majority of zeros in a tuple to be a distinct
majority. This can be seen from Fig. 2, where we have displayed the distri-
bution of zeros in tuples of size w=26 207. For these tuple size, the output
of R(17, 5) is extremely biased (P0(w)=0.265), and Fig. 2 indeed shows a
concentration of tuples with a number of zeros above w

2 . For R(17, 3) the
bias is much smaller (P0(w)=0.482) and the tuples with a majority of zeros
concentrate closer to w

2 . Both distributions differ significantly from the
binomial distribution of a Bernoulli- 1

2 process. Note that the average
number of zeros in tuples of size w is w

2 for all values of w.
A palpable feature of the curves P0(w) is their symmetry. Let

T=2p − 1 denote the period of the pseudo noise sequence. Then P0(w)
seems to be point symmetric around T

2 , i.e., the curves look like
P0(T − w)=1 − P0(w).3 An inspection of the raw data reveals that the

3 This means that for each w-tuple containing more ‘‘heads’’ than ‘‘tails’’ there exists a
(T − w)-tuple with more ‘‘tails’’ than ‘‘heads’’ and vice versa. In that sense the title of this
work has to be taken with a pinch of salt.

Pseudo Random Coins Show More Heads Than Tails 1153

13000 13100 13200 13300
n

0

500

1000

1500

2000

of

 z
er

os

R(17,3)
R(17,5)
fair coin

Fig. 2. Number of tuples of size w=26207 that contain n zeros as generated by R(17, 3)
and R(17, 5). The dashed line is the theoretical outcome of a Bernoulli- 1

2 process (fair coin).

symmetry is not exact, however. Consider a tuple of odd size w that con-
tains more ones than zeros (this occurs with probability 1 − P0(w)). Then
the complementary tuple of even size T − w cannot have more ones than
zeros. It either has less ones than zeros (with probability P0(T − w)) or the
same number of ones and zeros. The latter means that the w-tuple must
contain exactly (w − 1)/2 zeros. We get

P0(T − w)=1 − P0(w) − b(w) (6)

where b(w) denotes the probability that a tuple of odd size w is balanced,
i.e., that it contains exactly (w − 1)/2 zeros. Equation (6) is an exact equa-
tion but not exactly what we want, since it relates odd-sized tuples and
even-sized tuples whereas Fig. 1 shows P0(w) for odd w only. So let us
relate the w-tuple to the tuple of odd size T − 1 − w. Now there is one bit
left that is either one or zero. If we assume that this bit is uncorrelated with
the bits in the tuples, we get

P0(T − 1 − w) % 1 − P0(w) −
b(w)

2
. (7)

Equation (7) is only an approximation because it neglects the correlation of
the spare bit with the rest of the sequence, yet it provides us with a

1154 Bauke and Mertens

qualitative understanding of the near-symmetry in P0(w). For w < p,
Eq. (7) is exact and can be simplified to

P0(T − 1 − w)=
1
2

−
1

2w+1
1 w

w − 1
2

2+O(2−p), w < p. (8)

Note that the symmetry in P0(w) has nothing to do with the LFSR method.
It is a sole consequence of the periodicity and the balance of zeros and ones
within one period.

3. CALCULATING THE BIAS

Linear feedback shift register sequences are simple enough to allow an
exact calculation of P0(w) at least for small w. (12) Let p1(w, n) denote the
probability of having n one-bits in a tuple of size w, and let fw(z) denote
the generating function of p1(w, n), i.e.,

fw(z)= C
w

n=0
p1(w, n) zn. (9)

Once fw(z) is known, the probability P0(w) of having more zeros than ones
can be calculated easily,

P0(w)= C
(w − 1)/2

n=0
p1(w, n) for odd w. (10)

Ignoring the O(2−p) corrections we know that each bit in tuples of size
w < p has probability 1

2 to be zero or one, hence

fw(z)=11+z
2

2w

, w [p. (11)

For w > p, triples of bits appear that are related by (3). This can be
depicted by a 3-uniform hypergraph: the vertices of the hypergraph are the
bits of the tuple and a hyperedge joins each triple of nodes that are related
by (3). Figure 3 shows the hypergraph for (p, q)=(17, 6) and w=19. To

1 12

18

2 13

19

3 4 5 6 7 8 9

10 11 14 15 16 17

Fig. 3. Hypergraph representing tuples of size w=19 in sequences generated by R(17, 6).

Pseudo Random Coins Show More Heads Than Tails 1155

1 + z

2
1 + 3 z 2

4

1 + 2 z 2 + 4 z 3 + z 4

8

Fig. 4. Small components and their generating functions.

calculate the generating function of the whole graph we need to know the
generating functions of its unconnected components (Fig. 4).

The generating function for the triangle reflects the fact that
x=y+z mod 2 implies that either none (one configuration) or two (three
configurations) bits equal one. For our example with (p, q)=(17, 6) we
obtain

f19(z)=11+z
2

213 11+3z2

4
22

. (12)

This can easily expanded using a computer algebra system to get

P0(19)=
32 053
65 536

% 0.4891. (13)

As w gets larger, more and more hyperedges (triangles) are added to
the graph and the value of P0(w) decreases. Beyond a certain density of
edges, triangles merge to form bow ties, see Fig. 5. The generating function
for the bow tie type subgraph can easily be calculated (see Fig. 4) and the
generating function that corresponds to Fig. 5 is

f25(z)=11+z
2

23 11+3z2

4
24 11+2z2+4z3+z4

8
22

. (14)

Again we apply a computer algebra system to expand this polynomial and
to sum up the coefficients to get

P0(25)=
15 485
32 768

% 0.4726. (15)

1 12 2 13

18 19

7 824 25

5 16

22

4 15

21

3 14

20

6 17

23

9 10 11

Fig. 5. Hypergraph representing tuples of size w=25 in sequences generated by R(17, 6).

1156 Bauke and Mertens

1 2 a...
h(z)
g(z) =

1
2a

1 z

z 2 z

a–1
1
z)((())

Fig. 6. The generating function f(z)=h(z)+g(z) for a hyperpath of length a can be cal-
culated with O(log a) matrix multiplications (using fast exponentiation).

If we increase w further, more and more nodes are joined by
hyperedges, new types of connected components appear and the calculation
of the corresponding generating functions gets more complicated. Figure 6
shows how to calculate the generating function for a path in the
hypergraph. Beyond a certain value of w, the hypergraph is connected. The
generating function can still be calculated exactly but we don’t know a
general method that needs less than O(2p) operations. This limits the prac-
tical calculation of P0(w) to either small values p (say p < 40) or to small
values of w, where the hypergraph consists of disconnected, small compo-
nents (see below).

We have seen how adding hyperedges to the graph decreases P0(w),
but at some point this trend must reverse, last but not least because of
Eq. (7). Complete graphs with P0(w) > 1

2 are too big and entangled to be
drawn here (see Fig. 8 for a partial graph of five vertices), but the mecha-
nism that leads to an increase of P0(w) can be understood without seeing
an example. Each hyperedge imposes more constraints on the variables in
the graph, reducing the number of possible assignments. No set of con-
straints can ever rule out the all-zero assignment, however, hence zero-bits
are favored in highly connected subgraphs.

So far our examples had small values of p, allowing us to enumerate
the complete period of the pseudo noise sequence. Practical random
number generators have large values of p, and simulations consume only a
negligible part of the period. The general case can be analyzed easily as
long as

w [min(p+q, 2p − q), (16)

since for these values of w our hypergraph consists of isolated vertices and
isolated triangles only. Setting k=max(w − p, 0) (the number of triangles)
we get

fw(z)=11+z
2

2p − 2k 11+3z2

4
2k

(17)

Pseudo Random Coins Show More Heads Than Tails 1157

and

p1(n)=
1
2p C

k

j=0
3 j 1k

j
21p − 2k

n − 2j
2 . (18)

To calculate P0(w) we need to sum p1(n) from n=0 to n=(w − 1)/2. We
haven’t found a compact expression for this sum in general, but for
w=p+1 (p even) and w=p+2 (p odd) the summation can be done:

P0(p+1)=
1
2

−
1

2p+1(p − 1)
1p

p
2

2

=
1
2

−
1

`2pp3
+O(p−5

2) (19)

P0(p+2)=
1
2

−
1

2pp
1 p

(p+1)
2

2

=
1
2

−
1

`
p
2 p3

+O(p−5
2). (20)

Figure 7 shows P0(w) calculated by summing up p1(n) (18) numerically
for values (p, q) used in practical random number generators. Even for the
small tuple sizes the bias is large enough to affect moderately precise

0 500 1000 1500
w

0.494

0.495

0.496

0.497

0.498

0.499

0.500

P0 (w)

R(250,103)
R(607,273)
R(1279,418)

Fig. 7. Bias in tuples generated by ‘‘industrially sized’’ pseudo random number generators.

1158 Bauke and Mertens

simulations. The curves end at values of w where (16) ceases to hold. For
the generator R(9689, 471) discussed in ref. 19, this value is w=10 159,
and P0(10 159) % 0.499 817.

4. MORE FEEDBACK

Pseudo noise sequences over Z2 starred in the ‘‘Ferrenberg affair’’ and
they were caught to produce bad results in random walk simulations. On
the other hand they do pass many statistical tests and they lead to extre-
mely fast random number generators, so people tried to ‘‘improve’’ the
quality of LFSR sequences, mainly based on empirical considerations. One
proposal was to increase the number of feedback taps (19), i.e., to use

xk=xk − s+xk − r+xk − q+xk − p mod 2 k > p > q > r > s (21)

with four feedback taps instead of two. If the corresponding feedback
polynomial

xp − xq − x r − x s − 1 (22)

is primitive modulo 2, the resulting sequence is again a pseudo noise
sequence with period T=2p − 1. Note that the number of feedback taps
must be even for a primitive polynomial to exist.

In fact it has been shown recently that increasing the number of feed-
back taps alleviates the failure of pseudo noise sequences in Monte-Carlo
simulations with the Wolff algorithm. The number of taps must be very
large to reach the quality of other, much simpler generators, however. (16)

The question is how the number of feedback taps affects the bias in our
simple coin flipping experiment.

Due to the pseudo noise property we have P0(w)=1
2+O(2−p) for w [p

independently of the number of feedback taps. For larger values of w,
P0(w) depends on the number and the position of the feedback taps. If t
denotes the number of feedback taps, the resulting hypergraph is
(t+1)-uniform, i.e., a single hyperedge connects t+1 variables. Figure 8
shows the case t=4 and its generating function. The generating function
for t+1 variables connected by a hyperedge reads

f(z)=
1
2 t C

t
2

k=0

1 t+1
2k

2 z2k. (23)

A hyperedge favors ones for t — 2 mod 4 and zeros for t — 0 mod 4, and the
bias that is introduced with each hyperedge decreases with increasing t

Pseudo Random Coins Show More Heads Than Tails 1159

f (z) =
1 + 10z 2 + 5 z 4

16

Fig. 8. Generating function for variables connected by recursion with t=4 feedback taps.

(Fig. 9). If the w-tuple is small enough the graph consists of isolated points
and isolated hyperedges. For these cases the generating function reads

f(z)=1 1
2 t C

t
2

k=0

1 t+1
2k

2 z2k2w − p 11+z
2

2p − t(w − p)

, (24)

where p is the largest feedback tap. Assuming p even we get after some
algebra

P0(p+1)=
1
2
+(−1)

t
2

1
2p+1

1p
p
2

21
p
2
t
2

2

1p
t
2

=
1
2
+(−1)

t
2

(t − 1)!!

`2pp t+1
+O(p−t+3

2) (25)

0 25 50 75 100 125 150 175 200
t

0.2

0.3

0.4

0.5

0.6

0.7

P
0

t = 0 mod 4
t = 2 mod 4

Fig. 9. Probability P0 to have more zeros than ones in t+1 vertices connected by a single
hyperedge. t is the number of feedback taps.

1160 Bauke and Mertens

and for odd p

P0(p+2)=
1
2
+(−1)

t
2

1
2p

1 p
(p+1)

2

21
(p+1)

2
t
2

2

1p+1
t

2

=
1
2
+(−1)

t
2

(t − 1)!!

`
p
2 p t+1

+O(p−t+3
2). (26)

n!!=n · (n − 2) · · · · denotes the double factorial function. In both cases the
bias decreases like O(p−(t+1)/2), so we may conclude that increasing the
number of feedback taps indeed alleviates the bias, at least for small values
of w, where the hypergraph is sparsely connected. For larger values of w
the bias gets as large as in the case t=2, however, even for dense feedback
polynomials with t %

p
2 (Fig. 10). Practical applications usually consume

only tiny fractions of the period, hence they may well take advantage of the
initial reduction of the bias for larger values of t. This explains the empiri-
cal observations of Ziff. (19) He proposed the four tap generator
R(9689, 6988, 1586, 471), and for this generator (24) holds up to
w=10 159. We get P0(10 159) % 0.500 000 054, a value that needs to be
compared to P0(10 159) % 0.499 817 of the two tap generator R(9689, 471).

0 2
14

2
15

2
16

2
17

w

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

P
0
(w)

R(17,3,2,1)
R(17,5,4,1)
R(17,8,7,1)
R(17,12,10,8,7,6,5,4,3,2)

0 50 100 150 200
0.48
0.49
0.50
0.51
0.52

Fig. 10. Probability P0(w) that a w-tuple of successive bits of a pseudo noise sequence con-
tains more zeros than ones for LFSRs with four and eight feedback taps.

Pseudo Random Coins Show More Heads Than Tails 1161

We observe the O(p−1) decrease of the bias predicted by (26) for w=p+2.
Increasing the number of taps apparently suppresses the bias, but Fig. 10
tells us that it does not truly remove it.

5. AVOID THE ZEROS

The notion of a pseudo noise sequence can be generalized to linear
feedback shift register sequences over Galois fields like Zm with m being
prime. The LFSR sequence

xk=a1xk − 1+a2xk − 2+ · · · +apxk − p mod m (27)

with coefficients ai ¥ Zm attains the maximum period T=mp − 1 if and only
if the feedback polynomial

xp − a1xp − 1 − · · · − ap (28)

is primitive modulo m. (10, 12) Again a sequence with maximum period quali-
fies as pseudo noise sequence since any w-tuple with w [p appears preci-
sely mp − w times within one period, except the all zero tuple which appears
mp − w − 1 times. The case p=1, also known as linear congruential generator
(LCG), has been proposed by D. H. Lehmer in 1949. (14) With m being
limited by the wordsize of a computer, the period m − 1 is way too short for
simulations that run on present day hardware. Yet the Lehmer generator
has an interesting property: used as a pseudo random coin it yields
P0(w)=1

2 for all values of w!
The LCG generates numbers xi ¥ {1, 2,...m − 1} and a natural way to

simulate the flip of a coin is to choose ‘‘head’’ if xi [(m − 1)/2 and ‘‘tail’’
otherwise, i.e., to consider the binary sequence

yk=˛0 xk [(m − 1)/2
1 else.

(29)

The period T=m − 1 of a LCG is even, and the pseudo noise property of
the sequence (xk) guarantees that the sequence (yk) contains precisely T

2

ones and T
2 zeros. Setting b=aT/2

1 mod m we have

xk+T/2=bxk mod m and

xk+T=b2xk=xk mod m.
(30)

1162 Bauke and Mertens

Evidently b=m − 1 and xk+T/2 [(m − 1)/2 if and only if xk > (m − 1)/2.
For our binary sequence this means

yi+T/2=yi+1 mod 2, (31)

i.e., every tuple is accompanied by its complementary tuple with zeros and
ones exchanged. Equation (31) immediately implies P0(w)=1

2 .
Now let (xk) be a LFSR pseudo noise sequence with p > 1, and let

(x −

k) denote the sequence of every d-th element of (xk), i.e.,

x −

k=xk0+kd (32)

for fixed k0 < d. (x −

k) is called the d-decimated sequence of (xk). It can be
proven that the decimation of a LFSR sequence yields again a LFSR
sequence. (6, 10) For the particular choice

d=
mp − 1
m − 1

=mp − 1+mp − 2+ · · · +1 (33)

the decimated sequence (x −

k) is a LCG sequence, i.e., x −

k=ax −

k − 1 mod m for
some value a. This immediately implies that any zero in the original
sequence is accompanied by zeros d elements earlier and later,

xk=0 Z xk+d=0. (34)

Apparently the distribution of zeros in LFSR pseudo noise sequences is not
very random. For m=2, d equals the period and xk=x −

k. For m > 2 we
can apply the argument from above to the sequence (x −

k) to get

xk+T/2=(m − 1) xk mod m (35)

for the original sequence with T=mp − 1. All values in our sequence except
zero are balanced in the sense that a small value xk is accompanied by a
large value m − xk and vice versa. The bit sequence

yk=˛0 if 0 < xk [(m − 1)/2

1 if (m − 1)/2 < xk < m

ignore if xk=0

(36)

has P0(w)=1
2 for all w. Since only a fraction 1

m of all numbers are zeros, one
does not have to ignore them explicitly if m is large. In practical random
number generators m is close to the word size of the computer, like
m=231 − 1, and the imbalance induced by the zeros can be neglected. For

Pseudo Random Coins Show More Heads Than Tails 1163

m=2 it is dominant, however. This is the explanation why LFSR sequen-
ces over Z2 often fail in random walk simulations, whereas the same
sequences on larger fields Zm, m ± 2 work fine.

Strictly speaking we have proven P0(w)=1
2 for the sequence (36) only

with respect to the complete period. It is a priori not clear whether simula-
tions that explore a tiny fraction of the period can take advantage from the
omission of zeros, so let us check this by a simple simulation. We consider
the LFSR sequences

xk=xk − 32+xk − 63 mod 2 (37)

and

xk=xk − 27+xk − 40 mod 3. (38)

Both sequences are pseudo noise sequences with comparable, long periods,
263 − 1 % 9.2 · 1018 and 340 − 1 % 1.2 · 1019. The binary sequence (37) is readily
mapped onto {‘‘head’’, ‘‘tail’’}, but for the ternary sequence (38) we have
the choice of which value to ignore. According to our preceding considera-
tions it should make a difference whether the ignored value is zero or not.

Figure 11 shows that this is indeed the case. We measured the distri-
bution of ‘‘heads’’ in tuples of size 401. The sequence (37) has a significant

170 180 190 200 210 220 230
n

0

0.01

0.02

0.03

0.04

fair coin
LFSR mod 2, (head, tail)=(1,0)
LFSR mod 3, (head, tail)=(1,0)
LFSR mod 3, (head, tail)=(1,2)

Fig. 11. Distribution of the number n of ‘‘heads’’ in runs of length 401. The LFSR sequen-
ces are given by (37) and (38), the latter with two strategies to map {0, 1, 2} to
{‘‘head’’, ‘‘tail’’}. The data shown are averages over 512 000 non-overlapping tuples, a simu-
lation that consumes less than 10−10 of the period of the underlying sequences.

1164 Bauke and Mertens

bias towards ‘‘heads’’ if ones are interpreted as ‘‘heads’’ and zeroes as
‘‘tails.’’ Almost the same bias can be observed in sequences from (38) if the
same mapping between ‘‘heads’’ and ‘‘tails’’ and ones and zeroes is applied
(and the value two is ignored). When the zeros are ignored and ones are
interpreted as ‘‘heads’’ and twos as ‘‘tails’’, on the other hand, (38) is in
perfect agreement with a fair coin. Note that the data shown are averages
over 512 000 non-overlapping tuples. The total simulation consumes less
than 10−10 of the period of the sequences. Apparently the zeros leave their
traces in tiny samples.

The particular role of the zero is not surprising, considered its function
in the arithmetic of fields: zero is the neutral element of the additive group
and the only element that is not element of the multiplicative group. In
LFSR sequences this shows in the reduced number of all zero tuples in a
period and in the fact that the all zero tuple of size p is the only fix point of
the recursion. Another way to demonstrate the asymmetry of zero and non-
zero values is to note that changing ones to zeros and vice versa in the
initial seed of a LFSR sequence over Z2 does not result in the complemen-
tary sequence being generated. (19) What is surprising is to what extent the
special nature of the zero affects random number generators in small fields
like Z2 or Z3.

Note that we do not recommend linear recursions modulo 3 as pseudo
random number generators. We have chosen (38) only to illustrate the
special role of the zero. In our coin experiment we had to throw away 1

3 of
its output to get good results. Even for this simple simulation it is advisable
to choose a large prime modulus m to get a small fraction 1

m of zeros in the
output stream. As a general rule, the modulus and the coefficients ai ¥ Zm

should be large in order to preserve the entropy of the pseudo random
numbers under all circumstances. (16)

6. THE RANDOM WALKER REVISITED

The original motivation of this work was to understand why recur-
rences in Z2 yield bad results when used as pseudo random number
generators in random walk simulations. For one-dimensional random
walks the relation between P0(w) and the position of the walker is obvious:
P0(w) is the probability that after w steps the walker ends to the left of his
starting point (assuming that 0 encodes a step to the left).

For the walks in two dimensions discussed in ref. 18, the interpretation
depends on the specific algorithm used. The canonical way to generate a
random walk is this:

Pseudo Random Coins Show More Heads Than Tails 1165

(x, y) :=(0, 0);
for t :=1 to w do

if rand(0, 1)=1 then
x :=x+1;

else
x :=x − 1;

if rand(0, 1)=1 then
y :=y+1;

else
y :=y − 1;

Here one movement along the diagonals of the square lattice is
counted as a step, and each step consumes two pseudo random bits. The
movement along the x- and y-direction is driven by the 2-decimated
sequence of the original bit sequence, but decimating a LFSR sequence
over Z2 by a power of 2 is equivalent to shifting the sequence. (6, 19) Vat-
tulainen et al. generated N random walks of length w and counts how often
the walker ends in each of the four quadrants of the lattice. They compare
these values to the expected value N

4 using a q2-test with three degrees of
freedom. Equipped with our P0(w), we can calculate the q2-value that is to
be expected from this experiment. For simplicity we assume w to be odd.
Then the probability to end up in the southwest quadrant (x, y < 0) reads
P2

0(w), the probabilities for the other quadrants are P0(w)(1 − P0(w))
(southeast and northwest) and (1 − P0(w))2 (northeast). The q2-value of this
distribution with respect to the uniform distribution reads

q2

N
=3 − 16P0(w)+32P2

0(w) − 32P3
0(w)+16P4

0(w). (39)

Figure 12 shows q2 for N=106 and P0(w) from the R(250, 103)
generator (Fig. 7). This corresponds to the experimental setup of Vattulai-
nen et al. (see ref. 18, Fig. 1). The q2 values increase as soon as the length w
of the walk gets larger than the size p=250 of the shift register, the 99%-
line of the q2-distribution being crossed at w=263. The failure of
R(250, 103) in random walk experiments is obvious.

Vattulainen et al. report that while the R(250, 103) fails the random
walk test, its 3-decimated variant passes it. Decimating R(250, 103) by 3
results in the four tap generator R(250, 201, 152, 103). (19) We can use
Eq. (24) to calculate P0(w) and the corresponding value q2/N for w not too
far above 250. Figure 12 shows that R(250, 201, 152, 103) fails the random
walk test for samples of size N % 1010. This holds of course for any other
four tap generator with p=250. Note that instead of increasing the

1166 Bauke and Mertens

250 255 260 265 270 275 280
w

0

10

20

30

40

50

60

χ 2

R(250,201,152,103)

R(250,103)

Fig. 12. q2-value of the quadrant distribution in two-dimensional random walks of length w
as predicted by (39). The pseudo random bits are from R(250, 103) with N=106 and from
R(250, 201, 152, 103) with N=1010. The latter is equivalent to the 3-decimated R(250, 103).
The dashed line indicates the 99%-value of the q2 distribution.

number of samples one might as well increase the length of the walk to
detect deviations, since in general P0(w) departs more and more from 1

2 as w
increases, at least for quite a while.

The generalization of this analysis to walks in higher dimensions and
to the n-block test discussed in ref. 18 is straightforward.

Ziff (19) discusses extended simulations of kinetic self avoiding trails in
two dimensions. Here a walker starts at the lower left hand corner of a
L × L square lattice and heads in diagonal direction of the opposite corner.
At each newly visited site the walker turns by 90 degrees either clockwise or
anticlockwise with probability 1

2 each. When the walker encounters a site it
has been visited before he always turns so as not to retrace its path. The
lower and the left hand boundary of the lattice are reflective, while the
upper and the right hand side are adsorbing. What is measured is the
probability P(L) that the walker is adsorbed by the upper boundary. Due
to the symmetry P(L) should equal 1

2 for all values of L, but Ziff observed
striking deviations in his simulations. Although there is no simple mapping
between P0(w) and P(L) knowledge of the former helps to understand the
latter at least qualitatively. For example, the fact that two tap generators
yield P(L) < 1

2 whereas P(L) > 1
2 for four tap generators corresponds nicely

with the behavior of P0(w) (see Fig. 9 and Eq. (25) and (26)). Also the fact
that |P(L) − 1

2| increases with increasing L with a rate that is smaller for
four tap generators than it is for two tap generators is very similar to the
behavior of P0(w). Equation (24) allows us to calculate the sample sizes at

Pseudo Random Coins Show More Heads Than Tails 1167

which the generators R(9689, 471) and R(9689, 6988, 1586, 471) discussed
by Ziff would fail the two dimensional random walk test of Vattulainen
et al. The result is 108 for the two tap generator and 1015 for the four tap
generator. The latter value is out of reach for todays’ computing power,
but not for tomorrows’.

The simple random walks of Vattulainen et al., (18) Ziff’s kinetic self
avoiding trails (19) and the 3d self avoiding random walks discussed by
Grassberger (7) all share a common feature: they show inconsistent results
for pseudo random number generators that operate in Z2 and consistent
results for generators that operate in Zm with m % 231. Apparently the non-
random behavior of the zeros in linear recurrences affects more complex
simulations, too.

7. CONCLUSIONS

The main conclusion to be drawn from this paper is an advice: Do not
produce pseudo random numbers using arithmetic in Z2, use arithmetic in
Zm instead, with m being a large prime. Addition in Z2 is equivalent to the
exclusive-or operation, an operation that is very very fast even when it is
invoked from high-level languages like C, see ref. 19 for a nice single line
implementation. Addition in Zm with m being a prime > 2 requires a time
consuming modulo-operation, hence it is comprehensible why some pseudo
random number generators still operate in Z2. Our results in fact confirm
the empirical recipes of improving the quality of modulo 2 generators, yet
you should keep in mind that the clustering of zeros is suppressed but not
truly removed by these measures. Pseudo random numbers generated by
linear recurrences in Zm have some deficiencies for large values of m, too.
Random points in d-dimensional space are concentrated in hyperplanes for
d > p, (13, 15) reflecting the linearity of the generating process. And there are
long range correlations like the one shown in Eq. (35). None of these defi-
ciencies seems to collide with practical applications, however. We are not
aware of any simulation where LFSR sequences modulo 2 yield better
results than LFSR sequences with modulo m (m large prime). With random
walk simulations and cluster Monte-Carlo simulations (16) we know at least
two experiments where modulo m generators are significantly better than
modulo 2 generators.

Another conclusion of this work is that the empirically observed
failure of some LFSR random number generators in random walk experi-
ments can be explained theoretically. This actually argues in favor of the
LFSR method, since it is better to know and to control the deficiencies of a
random number generator than to rely on fancy methods which are basi-
cally justified by empirical observations. The LFSR method may appear
old and outmoded, yet it fits perfectly with Donald Knuth’s advice, (12)

1168 Bauke and Mertens

‘‘... random numbers should never be produced by a random method. Some
theory should be used.’’

ACKNOWLEDGMENTS

It is a pleasure to thank Brian Hayes for stimulating discussions. This
work was supported by the German science council (Deutsche For-
schungsgemeinschaft) under Grant ME2044/1-1.

REFERENCES

1. Paul D. Coddington, Analysis of random number generators using Monte-Carlo simula-
tion, Int. J. Mod. Phys. C 5:547 (1994).

2. Aaldert Compagner, Definitions of randomness, Am. J. Phys. 59:700–705 (1991).
3. Aaldert Compagner, The hierarchy of correlations in random binary sequences, J. Stat.

Phys. 63:883–896 (1991).
4. Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong, Monte-Carlo simulations:

Hidden errors from ‘‘good’’ random number generators, Phys. Rev. Lett. 69:3382–3384
(1992).

5. Andreas Futschik, Ist der Euro fair? Ergebnis einer empirischen Untersuchung, Austrian
J. Statistics 31:35–40 (2002).

6. S. W. Golomb, Shift Register Sequences, revised edition (Aegan Park Press, Laguna Hills,
CA, 1982).

7. Peter Grassberger, Monte-Carlo simulations of 3d self-avoiding walks, J. Phys. A:
Math. Gen. 26:2769–2776 (1993).

8. Bert F. Green, J. E. Keith Smith, and Laura Klem, Empirical tests of an additive random
number generator, J. Assoc. Computing Machinery 6:527–537 (1959).

9. Brian Hayes, The wheel of fortune, American Scientist 81:114–118 (1993).
10. Dieter Jungnickel, Finite Fields: Structure and Arithmetics (Bibliographisches Institut,

Mannheim, 1993).
11. S. Kirkpatrick and E. Stoll, A very fast shift-register sequence random number generator,

J. Comput. Phys. 40:517–526 (1981).
12. Donald E. Knuth, The Art of Computer Programming, 3rd edition, Vol. 2 (Addison–

Wesley, 1998).
13. Pierre L’Ecuyer and Richard Simard, On the performance of birthday spacings tests with

certain families of random number generators, Math. Comput. Simulat. 53:131–137 (2001).
14. D. H. Lehmer, Mathematical methods in large-scale computing units, in Proc. 2nd Sym-

posium on Large-Scale Digital Calculating Machinery, Cambridge, MA, pp. 141–146
(1949).

15. George Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci.
61:25–28 (1968).

16. Stephan Mertens and Heiko Bauke, Entropy of pseudo random number generators
(2003), http://arxiv.org/abs/cond-mat/0305319.

17. F. Schmid and N. B. Wilding, Errors in Monte-Carlo the simulations using shift register
random number generators, Int. J. Mod. Phys. C 6:781–787 (1995).

18. I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Physical tests for random numbers in
simulations, Phys. Rev. Lett. 73:2513–2516 (1994).

19. Robert M. Ziff, Four-tap shift-register-sequence random-number generators, Comput.
Phys. 12:385–392 (1998).

Pseudo Random Coins Show More Heads Than Tails 1169

	1. MANUFACTURING RANDOMNESS
	2. PSEUDO RANDOM COINS
	3. CALCULATING THE BIAS
	4. MORE FEEDBACK
	5. AVOID THE ZEROS
	6. THE RANDOM WALKER REVISITED
	7. CONCLUSIONS
	ACKNOWLEDGMENTS

