
Journal of Statistical Physics, Vol. 66, Nos. 1/2, 1992

Counting Lattice Animals: A Parallel Attack

Stephan Mertens 1 and Markus E. Lautenbacher 2

Received July 1.5, 1991

A parallel algorithm for the enumeration of isolated connected clusters on a
regular lattice is presented. The algorithm has been implemented on 17 RISC-
based workstations to calculate the perimeter polynomials for the plane
triangular lattice up to clustersize s = 21. New data for perimeter polynomials
D s up to D21, total number of clusters gs up to g22, and coefficients b~ in the
low-density series expansion of the mean cluster size up to b21 are given.

KEY WORDS: Cluster enumeration; lattice statistics; perimeter polynomials;
parallel algorithms.

1. I N T R O D U C T I O N

Power series expansions in lattice statistics require the enumerat ion of
finite connected clusters ("lattice animals" or "polyminoes"). The classical
site percolat ion problem (*) considered here is a s tandard example. If p
denotes the probabil i ty that a lattice site is occupied, the mean number
(per lattice site) of connected clusters of occupied sites with size s is given
by

ns(p) = ~ g s t p S (1 - p) ' =: p SD~.(q) (1)
t

with q = 1 - p . In the above equat ion gst denotes the number of possible
clusters with size s and perimeter t and D,(q) is usually termed the
perimeter polynomial . The perimeter polynomials comprise a considerable
amoun t of information about the percolat ion problem. Ds(1) = :gs gives the
total number of s-clusters per lattice site, for example, and the low-density
series expansion of the mean cluster size S (p) = p - 1 ~sSZns c a n easily be
calculated from the coefficients g~,.

Universit~it G6ttingen, lnstitut fiir Theoretische Physik, D-3400 G6ttingen, Germany.
2 Technische Universit~it Mfinchen, Physik Department T30, D-8046 Garching, Germany.

669

0022-4715/92/0100-0669506.50/0 �9 1992 Plenum Publishing Corporation

670 Mertens and Lautenbacher

Quantities like S(p) show nonanalytic behavior at the percolation
threshold Pc. To learn something about the location and the nature of such
singularities from series expansions, one has to know as many coefficients
as possible. ~2) To obtain series of reasonable length, the calculation of the
g,t's, i.e., the enumeration of lattice animals, has to be put on a computer.
Every enumeration algorithm, however, has to cope with the exponential
growth of the number of lattice animals with cluster size s: The time
required for a complete enumeration of lattice animals up to a size s grows
roughly like ~2 s, where 2 is somewhat below the coordination number of
the lattice. This exponential growth limits the easily reachable size very
soon and calls for highly efficient algorithms.

Based on the "shadow" method developed by Sykes, (3) Martin (4)
described an algorithm which considerably reduces the maximum cluster
size to be enumerated. The method proposed by Sykes, however, applies
only to bipartite lattices and in addition requires large amounts of fast
computer memory.

On the other hand, the brute-force enumeration of lattice animals by
direct counting can deal with any lattice type and its memory requirements
can be neglected. However, whether this approach can give useful results
despite exponential growth in computer time crucially depends on its
effective implementation on a computer.

It is the purpose of this paper to show that calculating the perimeter
polynomials by brute-force enumeration can indeed be very efficient, since
the counting algorithm can be perfectly parallelized. With its low storage
requirements and its parallel nature the algorithm is well suited for
medium-sized workstations which are becoming increasingly available at
research institutes. E.g., for this study we used 17 RISC-based workstations
in parallel to obtain three new perimeter polynomials for the (nonbipartite)
plane triangular lattice.

The outline of the paper is as follows: In the second section we give
a brief description of how to parallelize the counting algorithm proposed
by MertensJ 5) The third section contains some remarks about the per-
formance of the algorithm and a brief discussion of some aspects of the
implementation. The fourth section comprises the results obtained for the
plane triangular lattice in terms of three new perimeter polynomials.

2. THE PARALLEL A L G O R I T H M

Based on ideas of Martin (6) and Redelmeier, (7) Mertens ~5) presented an
efficient algorithm for the enumeration of lattice animals. It recursively
generates all clusters up to a given size s i.e., given any s-cluster, the
algorithm builds all (s + 1)-clusters by adding one new cluster site. If all

Counting Lattice Animals: A Parallel At tack 671

possible (s+l) -c lus ters with this particular s-cluster "parent" are
generated, a new s-cluster has to be found which again serves as parent for
a new generation of (s + 1)-clusters. This leads to a depth-first traversal of
a "family tree" of all clusters. Each child cluster in the tree consists of its
parent plus one new cluster site. This new cluster site has to be chosen so
that no older brother or ancestor's older brother in the tree contains it.
This is to ensure that every node in the tree is different from every other,
i.e., every cluster is generated exactly once. The information about which
sites are available for younger brothers and their descendants has to be
passed from every node to its offspring and its younger brothers. The way
this is done is crucial for the performance of the algorithm.

To explain why it can be parallelized, we give here only a simplified
description of the algorithm, not going into details, like the important con-
cept of "blocked" sites and efficient data structures (see ref. 5). The sites
which are available for a node's offspring and younger brothers are coded
in the "untried set." The following routine works, given such an untried set,
the size s of the cluster to be generated, and the perimeter t of the parent
(s-1)-c luster . The steps 1 4 are then repeated until the untried set is
exhausted. Each iteration generates a child of the parent and each recur-
sion all offspring of that child.

1. Remove an element from the untried set.

2. Determine "free" neighbors of this point; nn := number of these
new neighbor sites.

3. Count new cluster: Increase g,,t+ nn-1 by one.

4. If s <Sma•

(a) Add "free" neighbors to the untried set and label corre-
sponding lattice site "nonfree."

(b) Call this routine recursively with the current untried set,
t : = t + n n - 1 and s : = s + 1.

(c) Remove new neighbors from the untried set and relabel
corresponding lattice sites "free."

The key to parallelism lies in step 4c: Here the algorithm drops all informa-
tion about the recursively generated (and counted) offspring of a node. It
has no effect on the rest of the enumeration whether step 4 is actually per-
formed or not! This means that the enumeration of the offspring of some
so-cluster can be done independently from the enumeration of the offspring
of all other So-Clusters--the "cousins" decouple, as it were. Each subtask of
enumerating down from the so-cluster to full depth of the tree (s = sin,x) can
be executed on a separate computer. Because of this complete decoupling

672 Mertens and Lautenbacher

of subtasks, the problem of lattice animal enumeration considered here is
one of the rare cases where the simultaneous use of N processing units
reduces the required time by a factor N, since no interprocess communica-
tion is needed at all. Therefore we do not even need a truly parallel com-
puter architecture, but instead can distribute the independent subtasks on
several ordinary standalone workstations.

In practice we proceed as follows; We choose an So with a moderate
number of clusters, say s o = 8 with 16,689 clusters on the plane triangular
lattice (see Table III). If we have N computers at our disposal, we group
these clusters in N groups of no = [16,689/N] clusters each and associate
one group with each computer. For convenience we choose these groups
according to the order in which the So-Clusters are generated in building up
the family tree: The first no So-Clusters belong to the first group, the second
no So-Clusters to the second group, and so on. Every computer explores the
family tree up to size So, numbering the So-Clusters according to their order
of appearance. 3 If an So-Cluster belongs to the group with which the com-
puter is associated, the offspring of this cluster is explored to full depth, i.e.,
s = s and the corresponding values of the g / s are written into a file.
After all jobs have been completed, one simply adds corresponding
coefficients g,t calculated on different computers to get the final result.

The only synchronization required by this parallel organization is to
tell each job which part of the so-generation has to be explored to full
depth. But once the job has been started, no further communication with
other jobs is necessary. This facilitates the use of completely independent
computers. For example, the results presented here have been found in this
way using workstations from different local clusters in G6ttingen and
Munich.

3. P R O G R A M M I N G A S P E C T S A N D P E R F O R M A N C E

We think it is worthwhile to spend a few words on how the actual
implementation of the algorithm was done. Since C P U time obviously is
the bottleneck in lattice animal enumeration, improving the efficiency of
the code as much as possible is a major and mandatory task when putting
the algorithm on computer. The enumeration algorithm itself together with
a simple (nonparallel) F O R T R A N implementation has already been
described by Mertens elsewhere. (5) The program we used here was written
in the C programming language, since the recursive formulation of the

3 Since for So = 8 we have gs0 ~ 16,689, this repeated initial tree exploration causes negligible
overhead, as can be seen form the average cluster counting rate of z = 2.7 x 105 clusters/sec
in Table I.

Counting Lattice Animals: A Parallel Attack 673

Table I. Generating Rates in Units of clusters/second on Various UNIX
Workstat ions ~

Platform SS 1 DS 3100 SS 2 HP 720

Counting rate 2.45 x 10 s 2.88 x 105 5.11 x 105 8.12 x 105

a The actual data acquisition was done on machines of type DEC station 3100 and Sun
SPARCstation 1 only. SS, DS, and HP stand for Sun SPARCstation, DEC station, and

Hewlett-Packard, respectively.

Table II. Perimeter Polynomials D19, D2o, and D21 for the Plane Triangular
Lattice a

t 1 = 19 s = 2 0 s = 2 1

18 1 0 0
19 198 42 6
20 3273 1449 507
21 31288 16461 8292
22 206904 134598 793309
23 1138098 820623 563106
24 5159312 4207833 3226522
25 20570076 18503823 15633920
26 72477567 71501994 66567108
27 228644072 248501115 251246774
28 653800881 776333631 858205000
29 1687724526 2210940684 2661156060
30 3965625385 5734957758 7545172940
31 8449683798 13584271758 19621212282
32 16312020225 29414551056 46836042306
33 28486601108 58079623302 102711592570
34 44734046784 104448199773 206762868636
35 62841331056 170528427444 381403939182
36 78293701534 251442517179 643210904138
37 85253400810 332825218725 988314164230
38 79474311348 391705437144 1376151103032
39 61347762286 403694823051 1724915125136
40 36878757573 356544784128 1925965285922
41 15297106452 260634432204 1885718879538
42 3262576960 148150385331 1583043419972
43 0 58016840826 1099195790960
44 0 11669119236 592621285797
45 0 0 219802218854
46 0 0 41828064480

a Perimeter polynomials for smaller values of s can be found in refs. 5, 8, and 9.

674 Mer tens and Lautenbacher

algorithm does not fit nicely into a non-recursive language like
FORTRAN, and the UNIX operating system clearly favors C. After the
program had been written, we used the various profiling tools available to
locate the "hotspots" in our code where most of the execution time was
spent. These "hotspots" were optimized by standard techniques, such as
explicitly unrolling loops and if-then-else structures. Then in a refined
profiling analysis we searched for the handfull of variables accessed most,
in our case certain array indices used to address perimeter polynomial
coefficients gs,. We declared some of these variables to be of storage class
"register." Thus, there variables would be kept in one of the CPU's register
during the whole calculation instead of being swapped from and to the
memory everytime they were accessed. Finding out the optimal choice and
number of "register" variables by trial-and-error after explicit code un-

Table III. Total N u m b e r gs of Clusters
Grouped by Sites

on the Plane Triangular Lattice a

s gs

1 1
2 3
3 11
4 44
5 186
6 814
7 3652
8 16689
9 77359

10 362671
11 1716033
12 8182213
13 39267086
14 189492795
15 918837374
16 4474080844
17 21866153748
18 107217298977
19 527266673134
20 2599804551168
21 12849503756579
22 63646233127758

a g21 and g22 are new. g2o has been derived recently
by Sykes and Flesia (1I) using older enumeration
data and combinatorial arguments. Their value is
confirmed by our direct enumeration.

Counting Lattice Animals: A Parallel Attack 675

rolling, we were able to achieve an overall performance increase of 40 % in
terms of counted clusters per second relative to the nonoptimized version
of the program. Having in mind the overall computer resource consump-
tion of the present lattice animal study (see discussion below), we think the
time that went into program optimization was well spent after all.

To give some explicit ratings on program performance, we have
compiled in Table I the cluster generating rates per second as measured on
a number of workstations to which we had access. However, actual calcula-
tions that went into the present lattice animals data were only done on two
of them, the Sun SPARCstation 1 and the DEC station 3100, both of
which are machines based on modern RISC technology. With the total
number of clusters counted up to a maximum cluster size of S = 21
being gtot = 16111290471381 and an average generating rate of p ~ 2.7 x 105
clusters/sec (see Tables III and I, respectively) one readily derives a CPU

Table IV. Coefficients for the
Expansion of s (p) = ~ , r b r p r ~

r br

1 6
2 18
3 48
4 126
5 300
6 750
7 1686
8 4074
9 8868

10 20892
11 44634
12 103392
13 216348
14 499908
15 1017780
16 2383596
17 4648470
18 11271102
19 20763036
20 52671018
21 91377918

a b2 ~ and b21 are new to us; hi9 has again
been calculated recently by Sykes and
Flesia Ill) using combinatorics and is confir-
med by our direct enumeration.

822/66/I-2-43

676 Mertens and Lautenbacher

time consumption of r = gtot/P "~ 6.44 x 107 sec ~ 746 days ~ 2.04 years for
the whole study. By splitting the complete task of cluster counting into
smaller independent ones as described in Section 2 and running the sub-
tasks on about 17 different workstations simultaneously, we were able to
bring down the time necessary to complete the study by more than one
order of magnitude, to a still large but bearable z ~ 44 says. In reality, the
complete enumeration was finished in less than 2 months.

4. R E S U L T S

Table II shows the perimeter polynomials O19 , D2o, and D21 for the
plane triangular lattice which are new to us. Perimeter polynomials for
smaller values of s can be found in refs. 5, 8, and 9. We have used our data
to calculate the total number g, of s-clusters (Table III) and the coefficients
br of the low-density series expansion of the mean cluster size S (p) =
~,r brP r (Table IV). The knowledge of the perimeter polynomials up to size
Smax allows the calculation of gs up to s -~ Smax + 1 and the series expansion
of S up to order Srnax. For lattices for which the low-density expansion of
the mean number of clusters

K (p) = ~ k r p r (2)
r

is available through k --2, the perimeter polynomials of size Smax deter-
mine both b +1 and g + 2 .(1~ This fact has been exploited by Sykes and
Flesia (m to obtain g20 and b19. Their values have been confirmed by our
direct enumeration.

It is interesting to note that the coefficients br in the expansion of S(p)
for the triangular lattice keep growing monotonically with r. This should
be compared to the corresponding coefficients br of the simple square
lattice, which oscillate for larger values of r. (5)

5. C O N C L U S I O N S

In this study we have shown that the enumeration of lattice animals
can be organized in a parallel algorithm which reduces the necessary time
by a factor N, where N is the number of available computers. This is the
maximum improvement that can be expected from a parallel algorithm
using N processors, since in the form presented here the algorithm requires
no interprocess communication at all. Facing the exponentially growing
complexity of the enumeration problem, this might be regarded as only a
modest advance. Nevertheless the proposed algorithm already yields the

Counting Lattice Animals: A Parallel Attack 677

maximum speedup possible when trying to attack the problem with
multiple computers instead of one computer. Along these lines one simply
cannot do better. Further improvement calls for different methods.

The relevance of larger and larger exact enumerations may well be
questioned, of course. However, besides the pure academic motivation
of knowing still a few perimeter polynomials more, there is hope that if
reaching large enough values of cluster size s exact enumerations like this
one can give valuable guidance in the search for some analytic asymptotic
theory of lattice animals which, once found, surely will supplement exact
enumerations with a deeper understanding of lattice animal growth. Also,
numerical estimates for scaling corrections become more reliable with the
knowledge of additional perimeter polynomials.

It should be mentioned, however, that our parallel algorithm in the
present formulation is restricted to the calculation of perimeter polyno-
mials. A more general method for the effective generation of series expan-
sions, the "no-free-end" method, can be found in ref. 12.

In addition to the enumeration results presented, this paper can be
regarded as another example of how to attack a research problem in
computational physics using only medium-sized workstations instead of the
expensive CPU time of sometimes rather user-unfriendly and little flexible
mainframes. With prices falling, the number of workstations available is
expected to increase rapidly in the future. However, a considerable
percentage of them probably will be used only interactively for tasks like
text-processing, graphics, or e-mail, thus leaving the powerful CPU almost
idle. We have demonstrated here that on such machines a long-running,
low-priority background job which usually is not even recognized by the
average user is able to pick up enough CPU time to yield research results
in a reasonable amount of time if the whole project is coordinated properly
by running similar jobs on other idle workstations. We believe that along
these lines the computational power of the growing number of work-
stations may well be used to attack a number of problems which are up to
now in the realm of mainframes and supercomputers.

A C K N O W L E D G M E N T S

We would like to thank D. Stauffer for his helpful suggestions on the
manuscript. All calculations have been performed on workstations of the
Institute of Numerical and Applied Mathematics in G6ttingen and the
Institute for Theoretical Physics of the Physics Department at Technical
University Munich. One of us (S.M.) appreciates the support of the local
system administrator G. Siebrasse.

678 Mertens and Lautenbacher

R E F E R E N C E S

1. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985), and
references therein.

2. C. Domb and M. S. Green, eds., Phase Transitions and Critical Phenomena, Vol. 3
(Academic Press, 1974).

3. M. F. Sykes, J. Phys. A Math. Gen. 19:1007 1025, 1027-1032, 2425-12429, 2431 2437
(1986).

4. J. L. Martin, 3. Stat. Phys. 58:749 (1990).
5. S. Mertens, J. Stat. Phys. 58:1095 (1990).
6. J. L. Martin, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M.S.

Green, eds. (Academic Press, 1974), pp. 97-112; see S. Redner, J. Stat. Phys. 29:309 (1981)
for a FORTRAN program.

7. D. H. Redelmeier, Distr. Math. 36:191 (1981).
8. M. F. Sykes and M. Glen, J. Phys. A Math. Gen. 9:87 (1976).
9. A. Margolina, Z. V. Djordjevic, D. Stauffer, and H. E. Stanley, Phys. Rev. B 28:1652

(1983).
10. M. F. Sykes and M. K. Wilkinson, J. Phys. A 19:3415 (1986).
11. M. F. Sykes and S. Flesia, J. Stat. Phys. 63:487 (1991).
12. J. Adler, Y. Meir, A. Aharony, A. B. Harris, and L. Klein, 3. Stat. Phys. 58:511 (1990).

Communicated by D. Stauffer

