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A parallel algorithm for the enumeration of isolated connected clusters on a 
regular lattice is presented. The algorithm has been implemented on 17 RISC- 
based workstations to calculate the perimeter polynomials for the plane 
triangular lattice up to clustersize s = 21. New data for perimeter polynomials 
D s up to D21, total number of clusters gs up to g22, and coefficients b~ in the 
low-density series expansion of the mean cluster size up to b21 are given. 
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1. I N T R O D U C T I O N  

Power  series expansions in lattice statistics require the enumerat ion of 
finite connected clusters ("lattice animals" or "polyminoes").  The classical 
site percolat ion problem (*) considered here is a s tandard example. If p 
denotes the probabil i ty that  a lattice site is occupied, the mean number  
(per lattice site) of connected clusters of occupied sites with size s is given 
by 

ns(p) = ~ g s t p S ( 1 -  p) '  =:  p SD~.(q) (1) 
t 

with q = 1 - p .  In  the above equat ion gst denotes the number  of possible 
clusters with size s and perimeter t and D,(q)  is usually termed the 
perimeter polynomial .  The perimeter polynomials  comprise a considerable 
amoun t  of information about  the percolat ion problem. Ds(1 ) = :gs gives the 
total number  of s-clusters per lattice site, for example, and the low-density 
series expansion of  the mean cluster size S ( p ) =  p - 1  ~sSZns  c a n  easily be 
calculated from the coefficients g~,. 
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Quantities like S(p) show nonanalytic behavior at the percolation 
threshold Pc. To learn something about the location and the nature of such 
singularities from series expansions, one has to know as many coefficients 
as possible. ~2) To obtain series of reasonable length, the calculation of the 
g,t's, i.e., the enumeration of lattice animals, has to be put on a computer. 
Every enumeration algorithm, however, has to cope with the exponential 
growth of the number of lattice animals with cluster size s: The time 
required for a complete enumeration of lattice animals up to a size s grows 
roughly like ~2  s, where 2 is somewhat below the coordination number of 
the lattice. This exponential growth limits the easily reachable size very 
soon and calls for highly efficient algorithms. 

Based on the "shadow" method developed by Sykes, (3) Martin (4) 
described an algorithm which considerably reduces the maximum cluster 
size to be enumerated. The method proposed by Sykes, however, applies 
only to bipartite lattices and in addition requires large amounts of fast 
computer memory. 

On the other hand, the brute-force enumeration of lattice animals by 
direct counting can deal with any lattice type and its memory requirements 
can be neglected. However, whether this approach can give useful results 
despite exponential growth in computer time crucially depends on its 
effective implementation on a computer. 

It is the purpose of this paper to show that calculating the perimeter 
polynomials by brute-force enumeration can indeed be very efficient, since 
the counting algorithm can be perfectly parallelized. With its low storage 
requirements and its parallel nature the algorithm is well suited for 
medium-sized workstations which are becoming increasingly available at 
research institutes. E.g., for this study we used 17 RISC-based workstations 
in parallel to obtain three new perimeter polynomials for the (nonbipartite) 
plane triangular lattice. 

The outline of the paper is as follows: In the second section we give 
a brief description of how to parallelize the counting algorithm proposed 
by MertensJ 5) The third section contains some remarks about the per- 
formance of the algorithm and a brief discussion of some aspects of the 
implementation. The fourth section comprises the results obtained for the 
plane triangular lattice in terms of three new perimeter polynomials. 

2. THE PARALLEL A L G O R I T H M  

Based on ideas of Martin (6) and Redelmeier, (7) Mertens ~5) presented an 
efficient algorithm for the enumeration of lattice animals. It recursively 
generates all clusters up to a given size s . . . .  i.e., given any s-cluster, the 
algorithm builds all (s + 1)-clusters by adding one new cluster site. If all 
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possible (s+l) -c lus ters  with this particular s-cluster "parent" are 
generated, a new s-cluster has to be found which again serves as parent for 
a new generation of (s + 1)-clusters. This leads to a depth-first traversal of 
a "family tree" of all clusters. Each child cluster in the tree consists of its 
parent plus one new cluster site. This new cluster site has to be chosen so 
that no older brother or ancestor's older brother in the tree contains it. 
This is to ensure that every node in the tree is different from every other, 
i.e., every cluster is generated exactly once. The information about which 
sites are available for younger brothers and their descendants has to be 
passed from every node to its offspring and its younger brothers. The way 
this is done is crucial for the performance of the algorithm. 

To explain why it can be parallelized, we give here only a simplified 
description of the algorithm, not going into details, like the important con- 
cept of "blocked" sites and efficient data structures (see ref. 5). The sites 
which are available for a node's offspring and younger brothers are coded 
in the "untried set." The following routine works, given such an untried set, 
the size s of the cluster to be generated, and the perimeter t of the parent 
(s-1)-c luster .  The steps 1 ..... 4 are then repeated until the untried set is 
exhausted. Each iteration generates a child of the parent and each recur- 
sion all offspring of that child. 

1. Remove an element from the untried set. 

2. Determine "free" neighbors of this point; nn := number of these 
new neighbor sites. 

3. Count new cluster: Increase g,,t+ nn-1 by one. 

4. If s <Sma• 

(a) Add "free" neighbors to the untried set and label corre- 
sponding lattice site "nonfree." 

(b) Call this routine recursively with the current untried set, 
t : = t + n n - 1  and s : = s +  1. 

(c) Remove new neighbors from the untried set and relabel 
corresponding lattice sites "free." 

The key to parallelism lies in step 4c: Here the algorithm drops all informa- 
tion about the recursively generated (and counted) offspring of a node. It 
has no effect on the rest of the enumeration whether step 4 is actually per- 
formed or not! This means that the enumeration of the offspring of some 
so-cluster can be done independently from the enumeration of the offspring 
of all other So-Clusters--the "cousins" decouple, as it were. Each subtask of 
enumerating down from the so-cluster to full depth of the tree (s = sin,x) can 
be executed on a separate computer. Because of this complete decoupling 
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of subtasks, the problem of lattice animal enumeration considered here is 
one of the rare cases where the simultaneous use of N processing units 
reduces the required time by a factor N, since no interprocess communica- 
tion is needed at all. Therefore we do not even need a truly parallel com- 
puter architecture, but instead can distribute the independent subtasks on 
several ordinary standalone workstations. 

In practice we proceed as follows; We choose an So with a moderate 
number of clusters, say s o = 8 with 16,689 clusters on the plane triangular 
lattice (see Table III). If  we have N computers at our disposal, we group 
these clusters in N groups of no = [16,689/N] clusters each and associate 
one group with each computer. For convenience we choose these groups 
according to the order in which the So-Clusters are generated in building up 
the family tree: The first no So-Clusters belong to the first group, the second 
no So-Clusters to the second group, and so on. Every computer explores the 
family tree up to size So, numbering the So-Clusters according to their order 
of appearance. 3 If  an So-Cluster belongs to the group with which the com- 
puter is associated, the offspring of this cluster is explored to full depth, i.e., 
s = s . . . .  and the corresponding values of the g / s  are written into a file. 
After all jobs have been completed, one simply adds corresponding 
coefficients g,t calculated on different computers to get the final result. 

The only synchronization required by this parallel organization is to 
tell each job which part  of the so-generation has to be explored to full 
depth. But once the job has been started, no further communication with 
other jobs is necessary. This facilitates the use of completely independent 
computers. For  example, the results presented here have been found in this 
way using workstations from different local clusters in G6ttingen and 
Munich. 

3. P R O G R A M M I N G  A S P E C T S  A N D  P E R F O R M A N C E  

We think it is worthwhile to spend a few words on how the actual 
implementation of the algorithm was done. Since C P U  time obviously is 
the bottleneck in lattice animal enumeration, improving the efficiency of 
the code as much as possible is a major  and mandatory  task when putting 
the algorithm on computer. The enumeration algorithm itself together with 
a simple (nonparallel) F O R T R A N  implementation has already been 
described by Mertens elsewhere. (5) The program we used here was written 
in the C programming language, since the recursive formulation of the 

3 Since for So = 8 we have gs0 ~ 16,689, this repeated initial tree exploration causes negligible 
overhead, as can be seen form the average cluster counting rate of z = 2.7 x 105 clusters/sec 
in Table I. 
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Table I. Generating Rates in Units of clusters/second on Various UNIX 
Workstat ions ~ 

Platform SS 1 DS 3100 SS 2 HP 720 

Counting rate 2.45 x 10 s 2.88 x 105 5.11 x 105 8.12 x 105 

a The actual data acquisition was done on machines of type DEC station 3100 and Sun 
SPARCstation 1 only. SS, DS, and HP stand for Sun SPARCstation, DEC station, and 

Hewlett-Packard, respectively. 

Table II. Perimeter Polynomials D19, D2o, and D21 for the Plane Triangular 
Lattice a 

t 1 = 19 s = 2 0  s = 2 1  

18 1 0 0 
19 198 42 6 
20 3273 1449 507 
21 31288 16461 8292 
22 206904 134598 793309 
23 1138098 820623 563106 
24 5159312 4207833 3226522 
25 20570076 18503823 15633920 
26 72477567 71501994 66567108 
27 228644072 248501115 251246774 
28 653800881 776333631 858205000 
29 1687724526 2210940684 2661156060 
30 3965625385 5734957758 7545172940 
31 8449683798 13584271758 19621212282 
32 16312020225 29414551056 46836042306 
33 28486601108 58079623302 102711592570 
34 44734046784 104448199773 206762868636 
35 62841331056 170528427444 381403939182 
36 78293701534 251442517179 643210904138 
37 85253400810 332825218725 988314164230 
38 79474311348 391705437144 1376151103032 
39 61347762286 403694823051 1724915125136 
40 36878757573 356544784128 1925965285922 
41 15297106452 260634432204 1885718879538 
42 3262576960 148150385331 1583043419972 
43 0 58016840826 1099195790960 
44 0 11669119236 592621285797 
45 0 0 219802218854 
46 0 0 41828064480 

a Perimeter polynomials for smaller values of s can be found in refs. 5, 8, and 9. 
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algorithm does not fit nicely into a non-recursive language like 
FORTRAN, and the UNIX operating system clearly favors C. After the 
program had been written, we used the various profiling tools available to 
locate the "hotspots" in our code where most of the execution time was 
spent. These "hotspots" were optimized by standard techniques, such as 
explicitly unrolling loops and if-then-else structures. Then in a refined 
profiling analysis we searched for the handfull of variables accessed most, 
in our case certain array indices used to address perimeter polynomial 
coefficients gs,. We declared some of these variables to be of storage class 
"register." Thus, there variables would be kept in one of the CPU's register 
during the whole calculation instead of being swapped from and to the 
memory everytime they were accessed. Finding out the optimal choice and 
number of "register" variables by trial-and-error after explicit code un- 

Table III. Total N u m b e r  gs of Clusters 
Grouped by Sites 

on the Plane Triangular  Lattice a 

s gs 

1 1 
2 3 
3 11 
4 44 
5 186 
6 814 
7 3652 
8 16689 
9 77359 

10 362671 
11 1716033 
12 8182213 
13 39267086 
14 189492795 
15 918837374 
16 4474080844 
17 21866153748 
18 107217298977 
19 527266673134 
20 2599804551168 
21 12849503756579 
22 63646233127758 

a g21 and g22 are new. g2o has been derived recently 
by Sykes and Flesia (1I) using older enumeration 
data and combinatorial arguments. Their value is 
confirmed by our direct enumeration. 
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rolling, we were able to achieve an overall performance increase of 40 % in 
terms of counted clusters per second relative to the nonoptimized version 
of the program. Having in mind the overall computer  resource consump- 
tion of the present lattice animal study (see discussion below), we think the 
time that went into program optimization was well spent after all. 

To give some explicit ratings on program performance, we have 
compiled in Table I the cluster generating rates per second as measured on 
a number  of workstations to which we had access. However, actual calcula- 
tions that went into the present lattice animals data were only done on two 
of them, the Sun SPARCstation 1 and the DEC station 3100, both of 
which are machines based on modern RISC technology. With the total 
number of clusters counted up to a maximum cluster size of S . . . .  = 21 
being gtot = 16111290471381 and an average generating rate of p ~ 2.7 x 105 
clusters/sec (see Tables III  and I, respectively) one readily derives a CPU 

Table IV. Coefficients for the 
Expansion of s (  p )  = ~ , r b r p  r ~ 

r br 

1 6 
2 18 
3 48 
4 126 
5 300 
6 750 
7 1686 
8 4074 
9 8868 

10 20892 
11 44634 
12 103392 
13 216348 
14 499908 
15 1017780 
16 2383596 
17 4648470 
18 11271102 
19 20763036 
20 52671018 
21 91377918 

a b2 ~ and b21 are new to us; hi9 has again 
been calculated recently by Sykes and 
Flesia Ill) using combinatorics and is confir- 
med by our direct enumeration. 

822/66/I-2-43 
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time consumption of r = gtot/P "~ 6.44 x 107 sec ~ 746 days ~ 2.04 years for 
the whole study. By splitting the complete task of cluster counting into 
smaller independent ones as described in Section 2 and running the sub- 
tasks on about 17 different workstations simultaneously, we were able to 
bring down the time necessary to complete the study by more than one 
order of magnitude, to a still large but bearable z ~ 44 says. In reality, the 
complete enumeration was finished in less than 2 months. 

4. R E S U L T S  

Table II shows the perimeter polynomials O19 , D2o, and D21 for the 
plane triangular lattice which are new to us. Perimeter polynomials for 
smaller values of s can be found in refs. 5, 8, and 9. We have used our data 
to calculate the total number g, of s-clusters (Table III) and the coefficients 
br of the low-density series expansion of the mean cluster size S ( p ) =  
~,r brP r (Table IV). The knowledge of the perimeter polynomials up to size 
Smax allows the calculation of gs up to s -~ Smax + 1 and the series expansion 
of S up to order Srnax. For  lattices for which the low-density expansion of 
the mean number of clusters 

K ( p ) = ~ k r p  r (2) 
r 

is available through k .... --2, the perimeter polynomials of size Smax deter- 
mine both b .... +1 and g .... + 2 .(1~ This fact has been exploited by Sykes and 
Flesia (m to obtain g20 and b19. Their values have been confirmed by our 
direct enumeration. 

It is interesting to note that the coefficients br in the expansion of S(p)  
for the triangular lattice keep growing monotonically with r. This should 
be compared to the corresponding coefficients br of the simple square 
lattice, which oscillate for larger values of r. (5) 

5. C O N C L U S I O N S  

In this study we have shown that the enumeration of lattice animals 
can be organized in a parallel algorithm which reduces the necessary time 
by a factor N, where N is the number of available computers. This is the 
maximum improvement that can be expected from a parallel algorithm 
using N processors, since in the form presented here the algorithm requires 
no interprocess communication at all. Facing the exponentially growing 
complexity of the enumeration problem, this might be regarded as only a 
modest advance. Nevertheless the proposed algorithm already yields the 
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maximum speedup possible when trying to attack the problem with 
multiple computers instead of one computer. Along these lines one simply 
cannot do better. Further improvement calls for different methods. 

The relevance of larger and larger exact enumerations may well be 
questioned, of course. However, besides the pure academic motivation 
of knowing still a few perimeter polynomials more, there is hope that if 
reaching large enough values of cluster size s exact enumerations like this 
one can give valuable guidance in the search for some analytic asymptotic 
theory of lattice animals which, once found, surely will supplement exact 
enumerations with a deeper understanding of lattice animal growth. Also, 
numerical estimates for scaling corrections become more reliable with the 
knowledge of additional perimeter polynomials. 

It should be mentioned, however, that our parallel algorithm in the 
present formulation is restricted to the calculation of perimeter polyno- 
mials. A more general method for the effective generation of series expan- 
sions, the "no-free-end" method, can be found in ref. 12. 

In addition to the enumeration results presented, this paper can be 
regarded as another example of how to attack a research problem in 
computational physics using only medium-sized workstations instead of the 
expensive CPU time of sometimes rather user-unfriendly and little flexible 
mainframes. With prices falling, the number of workstations available is 
expected to increase rapidly in the future. However, a considerable 
percentage of them probably will be used only interactively for tasks like 
text-processing, graphics, or e-mail, thus leaving the powerful CPU almost 
idle. We have demonstrated here that on such machines a long-running, 
low-priority background job which usually is not even recognized by the 
average user is able to pick up enough CPU time to yield research results 
in a reasonable amount of time if the whole project is coordinated properly 
by running similar jobs on other idle workstations. We believe that along 
these lines the computational power of the growing number of work- 
stations may well be used to attack a number of problems which are up to 
now in the realm of mainframes and supercomputers. 
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