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Lattice Animals: A Fast Enumeration Algorithm 
and New Perimeter Polynomials 

S. M e r t e n s  ~ 

Received August 21, 1989 

A fast computer algorithm for enumerating isolated connected clusters on a 
regular lattice and its Fortran implementation are presented. New perimeter 
polynomials are calculated for the square, the triangular, the simple cubic, and 
the square lattice with next nearest neighbors. 

KEY WORDS: Cluster enumeration; Fortran program; perimeter polyno- 
mials. 

1. I N T R O D U C T I O N  

The problem of determining the number  of finite clusters on a regular lat- 
tice ("lattice animals" or  "polyominoes")  with given size s and perimeter t 
arises mainly in the context of series expansions in percolat ion problems. (1) 
If  we denote this number  (per lattice site) by g,l, the mean number  per 
lattice site of  clusters of  size s in the classical site percolation problem is 
given through 

( n , )  = ~ g~,pSq~ 
t 

=:  y D . ( q )  (1) 

where p = 1 - q  denotes the probabil i ty that a single lattice site has the 
at tr ibute that  makes it a cluster site. D s is usually called perimeter polyno- 
mial  Ds(1) =: gs gives the total number  per lattice site of clusters of  size s. 
Consider,  for example, the clusters of size 3 on the tr iangular lattice: There 
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are two of them with per imeter  nine, and  nine with per imeter  ten, i.e., 
D3(q) = 2q 9 + 9q 1~ 

The ca lcula t ion  of the gs, for large s quickly  gets compl ica ted  enough 
to be bet ter  put  on a computer .  An a lgor i thm for this cluster enumera t ion  
was presented  by M a r t i n  (2) and  Redner ,  (3) and  per imeter  po lynomia l s  for 
var ious  latt ices have been ca lcula ted  with it/5-11/ The enumera t ion  time, 

however,  grows like the to ta l  n u m b e r  of clusters, i.e., exponent ia l  with s. 
This  l imits the m a x i m u m  calculable  size s very soon. 

In  this commun ica t i on  an a lgor i thm is presented  which calculates  the 
per imeter  po lynomia l s  faster than  the a lgor i thm of Mart in .  A l though  this 
a lgor i thm,  too,  suffers from the exponent ia l  g rowth  of C P U  time with 
cluster  size s, the gain in speed is sufficient to ob ta in  new results even with 
little c o m p u t e r  time. These new per imeter  po lynomia l s  for the square,  the 
t r iangular ,  and  the s imple cubic lat t ice and  the square la t t ice with next 
neares t  ne ighbors  ( abbrev ia ted  as nnSquare )  are l isted in Append ix  A. 

There  are  m a n y  things tha t  can be ca lcula ted  with the per imeter  p o l y -  

Table I. Total Number  gs of Clusters Grouped by Sites a 

Sites nnSquare Triangular Cubic 

1 1 1 1 
2 4 3 3 
3 2O 11 15 
4 110 44 86 
5 638 186 534 
6 3832 814 3481 
7 23592 3652 23502 
8 147941 16689 162913 
9 940982 77359 1152870 

10 6053180 362671 8294738 
11 39299408 1716033 60494549 
12 257105146 8182213 446205905 
13 1692931066 39267086 3322769321 
14 11208974860 189492795 24946773111 
15 918837374 188625900446 
16 4474080844 
17 21866153748 
18 107217298977 
19 527266673134 

~' The numbers for the simple square lattice up to s = 24 can be found in ref. 4. Bold numbers 
are new to us. Note that our last three digits of g13 on the cubic lattice disagree with 
Lam's. (a3~ Our value agrees, however, with that of ref. 8. 
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Table I1. Coeff icients ~' for the Expansion of S ( p )  = ~" brP'- 
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r Square nnSquare Triangular Cubic 

1 4 8 6 
2 12 32 18 
3 24 108 48 
4 52 348 126 
5 108 1068 300 
6 224 3180 750 
7 412 9216 1686 
8 844 26452 4074 
9 1528 73708 8868 

10 3152 206872 20892 
11 5036 563200 44634 
12 11984 1555460 103392 
13 15040 4124568 216348 
14 46512 499908 
15 34788 1017780 
16 197612 *2383596 
17 4036 4648470 
18 929368 11271102 
19 * 702592 
20 4847552 
21 -7033956 
22 27903296 
23 -54403996 

6 
30 

114 
438 

t542 
5754 

19574 
71958 

233574 
870666 

2696274 
*10375770 
30198116 

122634404 

a Bold coefficients are new to us.  b23 for the square lattice has been obtained using g24 of ref. 4. 
Note that b19 , b21 , and b23 of the square lattice are negative. The values marked with 
asterisks confirm those in ref. 9. 

nomia l s ,  bu t  s ince this p a p e r  is m a i n l y  c o n c e r n e d  wi th  the  a lgo r i t hm,  on ly  

two  quan t i t i e s  h a v e  been  o b t a i n e d  f r o m  the  new da ta :  T h e  to t a l  n u m b e r  o f  

c lusters  of  size s, g ,  (Tab le  I),  and  the  coeff icients  of  the  series e x p a n s i o n  

of  the  m e a n  size of  c lus ters  at l ow  densi t ies ,  S(p)=p-lZs2(ns)  
(Tab le  II) .  T h e  k n o w l e d g e  of  the  p e r i m e t e r  p o l y n o m i a l s  up to a size Smax 

a l lows  the  ca l cu l a t i on  of  gs up to s = Smax + 1 a n d  the  series e x p a n s i o n  of  
2 S up to order Smax- 

2.  T H E  A L G O R I T H M  

In  1981 R e d e l m e i e r  (4) ca l cu l a t ed  the to t a l  n u m b e r  of  s -c lus ters  on  the  

s imple  q u a d r a t i c  la t t ice  up to a size of  24. A l t h o u g h  s imi lar  in the  bas ic  

2 See, however, ref. 5 for how to calculate g,ma~-- 2 and the series expansion up to order Sma ~ + 1 
using graph-theoretic methods. 
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concept, his algorithm differs from that of Martin in some important  
details which make the enumeration faster. In what follows the algorithm 
of Martin is denoted algorithm M, the one of Redelmeier algorithm R. 

Both algorithms generate all clusters up to a size Sma x in a recursive 
manner, i.e., given any s-cluster, the algorithm builds all (s + 1)-clusters by 
adding one new cluster site. If all possible (s + 1)-clusters with this par- 
ticular s-cluster "parent" are generated, a new s-cluster has to be found 
which again serves as a parent for a new generation (s + 1)-clusters. This 
leads to depth-first traversal of a "family tree" of all clusters (to cite 
Redelmeier). Each child cluster in the tree consists of its parent plus one 
new cluster site. The choice of this new site underlies two restrictions which 
ensure that each cluster appears exactly once in the tree. The first one is 
due to the translational symmetry of the underlying lattice: Certain lattice 
sites have to be nonaccessible ("blocked") for any cluster site (see Fig. la), 
preventing the new cluster site from being placed there. The second restric- 
tion is the requirement that the new cluster site has to be chosen so that 
no older brother or ancestor's older brother in the tree contains it (Fig. lb). 
As pointed out by Redelmeier, these two restrictions are sufficient to let 
every node in the tree be different from every other. 

Algorithm M realizes the second restriction through a prohibition 
mechanism: Each time a site is removed from a current s-cluster, the 
corresponding lattice site becomes "s-prohibited," i.e., is marked non- 
accessible for all of the cluster's children and younger brothers. After every 
possibility to create an s-cluster in this subtree has been explored, all 
s-prohibited sites are "freed," i.e., are made accessible again and control is 
passed to the ( s -1 ) - c lus t e r  ancestor node in the family tree. This 
mechanism clearly fulfills the second restriction, but it requires extra 
bookkeeping about the number of s-prohibited sites and their locations and 

(a:J ~ (b) 
Fig. 1. The x-sites of this square lattice are labeled "blocked" and the first site in the 
hierarchy of cluster-sites is the site labeled 1, the "origin." This forces the left most site of the 
bottom row of any cluster to be at the origin. The second restriction prevents an algorithm 
from generating the 3-cluster in (b) which differs from that in (a) only in its sequence of 
generated sites, indicated by the numbers 1, 2 and 3. 
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frequent modifications of lattice sites from "free" to "prohibited" and vice 
versa, which is very time consuming. 

While algorithm M uses the information of where not to place subse- 
quent cluster sites, algorithm R passes the information of where to place 
new cluster sites to each recursive invocation of the procedure. This 
"untried set" contains all points that are adjacent to the parent cluster and 
have not been used by the ancestors or the ancestors' older brothers. Algo- 
rithm R was originally designed for the enumeration of clusters on the 
square lattice, but the "untried set" ansatz is a very powerful mechanism to 
traverse the "family tree" on general lattices. It reduces the necessary 
bookkeeping by a decent amount, making the traversal of the tree much 
faster than the prohibition ansatz of algorithm M. Avoiding the explicit 
construction of clusters (see below), Algorithm R can be made even faster. 
The fast tree-traversing-capability of algorithm R is one reason why I 
borrow the "untried set" idea from Redelmeier. The other reason is that 
this technique facilitates the calculation of the perimeter, as is shown 
below. 

The following routine is given such an untried set, the size s of the 
cluster to be generated, and the perimeter t of the parent (s-1)-c luster .  
The steps 1,..., 4 are then repeated until the untried set is exhausted. Each 
i t e ra t ion  generates a child of the parent and each recurs ion  all of the off- 
spring of that child. 

1. Remove an element from the untried set. 

2. Determine "free" and "blocked" neighbors of this point; nn := 
number of these new neighbor sites. 

3. Count new cluster: Increase gs, t+nn-1  by one. 

4. If S<Smax: 
(a) Add "free" new neighbors to the untried set and label corre- 
sponding lattice sites "reachable." 
(b) Call this routine recursively with the current untried set, t := 
t + n n - 1  a n d s : = s + l .  
(c) Remove new neighbors from the untried set and relabel 
corresponding lattice sites "free." 

At any one time, each lattice site (excluding the "blocked" ones) is either 
"reachable" (i.e., an element of the current untried set or the untried set of 
an older brother) or "free." The algorithm is started with all lattice sites 
being "free" (besides the "blocked" sites and the "origin" in Fig. la, which 
is "reachable"), the untried set containing only the "origin," t = 0 and s = 1. 
The fact that in step 1 an element is taken from the untried set without 
labeling the lattice site "free" corresponds in a way to the "prohibition" 
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mechanism in algorithm M: Keeping this site "reachable" prevents it from 
being added to an untried set somewhere in the recursive offspring of that 
node. 

As discussed by Redelmeier, the untried set can be coded as a linked 
list, which makes the necessary operations on it (adding and removing 
elements and passing it as a parameter) very effective and therefore very 
fast. The use of the untried set, moreover, has the advantage that the 
cluster-perimeter can be traced with almost no extra effort, since the new 
neighbors of an added cluster site (step 2) have to be determined anyway 
to update the untried set in step 4a. It should be noted that the above algo- 
rithm avoids the explicit construction of a cluster, i.e., labeling the lattice 
site just taken from the untried set in step 1 as "occupied" as in 
Redelmeier's original algorithm. This is not necessary, because the relevant 
information is wether a lattice site is accessible in the current node and not 
the reason for its nonaccessibility, i.e., whether it is an element of the 
current cluster or a former element of one of its older brothers. 

A quantitative comparison of this algorithm with algorithm M in 
terms of CPU time will be given in the next section. 

3. A F O R T R A N  I M P L E M E N T A T I O N  

For the sake of simplicity a little complication has not been mentioned 
in the preceding section: The counting of "blocked" neighbors. To deter- 
mine the correct perimeter, the algorithm has to ensure that no "blocked" 
site is counted more than once as a perimeter site. This problem is most 
easily dealt with in the square lattice, since here the only site in the 
"blocked" area that can be a neighbor of more than one cluster site is the 
left neighbor of the "origin." In this case, we start the algorithm with the 
1-cluster instead of the 0-cluster and label the left neighbor of the origin 
"counted" since it has already contributed to the perimeter of the 1-cluster. 
For other lattices (such as the triangular lattice, for example), each 
"blocked" site which is adjacent to the "free" area can be a neighbor of two 
(or more) cluster sites. One is therefore forced to trace the "blocked" sites 
counted in step 2. This can be achieved by labeling them "counted" in 
step 4a and relabeling them "blocked" in step 4c. 

A Fortran program for the calculation of perimeter polynomials in the 
square lattice is listed in Appendix B. The two-dimensional lattice is stored 
in the linear list la t t [1. . .nlat t ] ,  nnn denotes the number of nearest 
neighbors and direet[ l . . .nnn]  contains the adjacency vectors which give 
the nearest neighbors of any site, nsmax denotes the maximum cluster size 
to be generated and maxt the maximum perimeter that can occur. The 
perimeter of the current s-cluster is stored in avail(s), the coefficients of the 
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perimeter polynomials in the linear list g. The variables suec, first, and 
newfi are used for coding the untried set as a linked list; see ref. 4 for a 
detailed description of this method. The rest of the variables are mainly 
dummy variables to avoid time-consuming operations on array variables or 
offset variables used to code g,~ as a linear list. 

The initialization of the lattice, the 1-cluster, and its untried set takes 
place between lines 12 and 34. In lines 35...39 an element is removed from 
the untried set, in lines 40...48 the neighborhood of this site is explored 
and the free neighbors are added to the untried set. The new cluster is 
counted in line 50. If the current cluster size s is smaller than Smax- 1, the 
procedure is called recursively (lines 52...57). Otherwise, only the number 
of neighbor sites of each of the possible Smax-Clusters is calculated (lines 
59... 70). The recently added neighbors are removed from the untried set in 
lines 72... 76. If there are still elements in the current untried set, the proce- 
dure is iterated (line 77), otherwise it returns to the parent node (lines 
78...81) or finally shows the results and stops. 

The presented Fortran program can be made faster at the price of 
more lines of code. For example, in the loop between lines 41 and 48 the 
loop variable m always runs from 1 to 4 (the number of nearest neighbors). 
A replacement of this loop with four replicas of the loop's body saves a lot 
of index calculations, since direction(m) can be replaced by direction(I)... 
direction(4) and the index calculation is done at compile rather than at run 
time. Another means to improve the performance is provided by the fact 
that only one site of the four neighbors of a given cluster site can eventually 
be in the "blocked" area. Therefore the detailed test in line 42 can be 
replaced by a simpler (and faster) one in three of four cases. For  the quad- 
ratic lattice, this modifications improve the performance by about 24% 
(see Table III); for other lattice types the gai n in speed is even higher, espe- 
cially for lattices with high coordination numbers. 

In Table lII, the performance of the presented Fortran program (and 
its "tuned" version as described above) is compared to Redner's implemen- 
tation of algorithm M. It can be seen that Redner's program is about 46 % 
slower than the fast version of the presented Fortran progran] despite the 
fact that Redner's program only calculates the total number of s-clusters. 
Actually, this should make it faster than any calculation of the full 
perimeter polynomials. Demme and Diemer (12) presented a modification of 
algorithm M which enumerates clusters about 2 times faster than the 
original implementation of Redner, where 2 ~ coordination number of the 
lattice. They used the fact that it suffices to explore the "family tree" down 
to the nodes with s = Smax -- 1 if one introduces an additional bookkeeping 
about the accessible perimeter sites of a cluster. This corresponds to the 
fact that the total number of clusters of size s can be calculated from the 
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Table II1. To ta l  CPU T ime  ( in sec)  on  an A p o l l o  DN 4500 Workstation 
for the Enumeration of Lattice Animals on the Square La t t i ce  a 

Presented algorithm 
Algorithm M 

sma x (program of ref. 3) Program as listed Fast version 

12 5.4 4.9 3.8 
13 20.3 18.4 14.0 
14 79.1 68.6 54.5 
15 291.7 262.7 199.2 

a An IBM 3090 is about three times faster, but gives about the same speed ratios. Notice that 
algorithm M only enumerates the total numbers of s-clusters, while the algorithm presented 
here also gives their perimeter. 

perimeter polynomial with s - 1 .  The performance of the program of 
Demme and Diemer for Sm~x therefore has to be compared with the perfor- 
mance of the presented program for Sma x -- 1. It turns out that the Demme 
and Diemer version of Algorithm M is about 68 % slower (for the square 
lattice) than the fast version of our program and our algorithm could be 
made even faster for the simpler task of calculating the total number of 
clusters. 

APPENDIX  A. NEW PERIMETER P O L Y N O M I A L S  

In this Appendix, perimeter polynomials for various lattice types 
(square, triangular, cubic, square with next nearest neighbors) are pre- 
sented which seem new (Tables IVA-IVD).  The used CPU time as back- 
ground processes on an Apollo DN 3500 or 4500 workstation ranges from 
about 30 h for the square lattice with next nearest neighbors (Smax = 13) up 
to about 1 month for the square lattice (Smax = 22). The g~t for smaller 
values o f s  can be found in ref. 5 (square), ref. 11 (nnsquare), refs. 5 and 10 
(triangular), and ref. 6 (cubic). 

Duarte (14) calculated (among other things) all g~t for t~< 16 on the 
square lattice. His values are confirmed. 
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Table IVA. New Perimeter Polynomials for Square Lattice 

t s =  18 s =  19 s - 2 0  s = 2 1  s = 2 2  

14 4 0 0 0 0 

15 396 124 28 4 0 

16 8146 3982 1730 651 206 

17 77042 49820 29263 15664 7632 

18 498510 386626 277540 184792 114170 

19 2375948 2185492 1842286 1442972 1058218 

20 8892252 9568542 9371179 8467282 7137662 

21 26424552 33581728 38089751 39444812 37849142 

22 63570106 95790204 126608106 150367840 163610644 

23 124322284 224749652 348128020 476549024 589572902 

24 198771190 435951906 799099308 1268641853 1792118418 

25 260020876 701526660 1537756259 2855017064 4634111086 

26 278241194 937190080 2487219956 5453409264 10245773246 

27 242759710 1038528312 3382206302 8855133452 19431734658 

28 171725416 952066016 3863223002 12226523903 31651808512 

29 97636026 718391056 3696468187 14336402380 44276317808 

30 44239618 443166310 2950845400 14242603046 53124561334 

31 15780916 221576912 1953171286 11942529948 54546106532 

32 4382132 88988542 1064426530 8409232029 47767546994 

33 928608 28363508 473427096 4940061004 35515036016 

34 147426 7090716 170289758 2403638058 22294159292 

35 16792 1362772 48953476 960196876 11737001634 

36 1332 197494 11108759 312084862 5144218940 

37 64 20636 1950048 81552556 1861029946 

38 2 1516 259508 16916512 550671010 

39 0 68 25096 2729340 131694496 

40 0 2 1712 335497 25121626 

41 0 0 72 30100 3745232 

42 0 0 2 1920 427292 

43 0 0 0 76 35808 

44 0 0 0 2 2140 

45 0 0 0 0 80 

46 0 0 0 0 2 
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Table IVB. New Perimeter Polynomials for Square Lattice 
wi th  Next Nearest Neighbors 

t s =  11 s =  12 s =  13 

18 8 2 0 
19 16 0 0 
20 298 151 68 
21 972 524 192 
22 3768 2486 1554 
23 12076 9580 6796 
24 33442 30739 23701 
25 81668 84477 77928 
26 185898 223164 230904 
27 374564 518884 596864 
28 703094 1104476 1461950 
29 1179252 2180318 3246404 
30 1867098 3976698 6661962 
31 2653520 6601780 12785416 
32 3500572 10362729 22810042 
33 4253768 14867879 37555092 
34 4741066 19827396 58372070 
35 4790232 24605800 84302484 
36 4481228 28261864 113533120 
37 3747168 29863552 142979396 
38 2842960 29266646 168351436 
39 1878600 26269734 184110852 
40 1095812 21495975 187495542 
41 543908 15838460 176766448 
42 230056 10522966 154250074 
43 75480 6118796 123080096 
44 18998 3135682 89906050 
45 3396 1365574 58994028 
46 452 494560 34776132 
47 36 138764 17998340 
48 2 30132 8167838 
49 0 4756 3119288 
50 0 560 976976 
51 0 40 239116 
52 0 2 45753 
53 0 0 6428 
54 0 0 680 
55 0 0 44 
56 0 0 2 
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Table lVC.  New Perimeter Polynomials for Triangular Lattice 

t s =  16 s =  17 s =  18 

17 6 0 0 

18 290 87 14 

19 3147 1458 613 

20 21924 13074 6864 

21 117632 81606 52419 

22 514503 411546 305656 

23 1920135 1743216 1446105 

24 6259778 6350256 5974463 

25 17891511 20551044 21301341 

26 45442314 58642875 68191791 

27 102050537 150320514 194840911 

28 203225319 343641300 501155544 

29 355865085 702686730 1164695703 

30 545610411 1280881581 2432848553 

31 723205227 2066045316 4578711889 

32 813752322 2934136986 7712998128 

33 757005387 3618901248 11567355829 

34 550789344 3804395967 15337518381 

35 277984614 3310771548 17794834867 

36 72421358 2250460905 17506888220 

37 0 1059161730 14319930851 

38 0 256954761 9135628605 

39 0 0 4028224110 

40 0 0 914388120 



1106 Mertens 

Table IV D. N e w  Perimeter Polynomials for Simple Cubic Lattice 

t s =  12 s =  13 s =  14 

26 9 0 0 

27 0 0 0 

28 432 48 0 

29 4668 132 0 

30 25440 3673 412 

31 138904 25568 1908 

32 620231 146086 24378 

33 2097936 729428 159144 

34 5926745 2907755 839738 

35 13865948 9634686 3801489 

36 27402345 26792718 14333094 

37 45460473 64142668 45462840 

38 63712706 131866119 125799096 

39 75644082 233643764 303030330 

40 75589074 356875730 641449368 

41 62963158 470803212 1189701924 

42 42141124 536248708 1937592309 

43 21088314 523333552 2772958188 

44 7408509 432412758 3483707502 

45 1785240 294422852 3833369250 

46 294660 156471102 3665727768 

47 33264 61279704 3009350772 

48 2520 17123236 2075360802 

49 120 3383940 1153919334 

50 3 472431 492225102 

51 0 46220 155424804 

52 0 3096 35770806 

53 0 132 5974992 

54 0 3 721578 

55 0 0 62304 

56 0 0 3732 

57 0 0 144 

58 0 0 3 
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A P P E N D I X  B. A F O R T R A N  P R O G R A M  FOR 
T H E  S Q U A R E  LATTICE 

1107 

I: PARAMETER(nmax=i2,nnn=4, 44: locflr = test 

2; *maxt=2*nmax+2,nsize=nmax*mazt, 45: iLtt(test) = re~ch 

3:  +nlatt=2*nmax*(nmax+2)+l) 46:  1040 newper = newper+l 

4: INTEGER free,block,reach, 47: 1050 m = m+l 

5: +comlt,g(neize),latt(nlath), 48: IF (m.LE.nnn) 00 TO 1020 

6; +succ(nlatt),direct(nnn), 49: offset = goff + newper 

7: +avail(nmax),firet(nmax), ~0: g(offeet) = g(offeet)+l 

8: +newfi(nmax),s,t,test, 51: IF (s.LT.nmax-l) THEN 

9:  +golf,offset 52: first(s) = locfir 

i0: PAHANETER(count=-2,reach=-l, 5S: s = s+l 

ii: +free-O,block=l) 54: Eof~ = golf + maxt 

12: DATA latt/nlatt*free/, 55: ava/l(s) = ne~er 

IS: +succlnlatt*O/,g/nsiza*O[ 56:  first(s) = l o c f i r  
14: direct(1) = -i 57: GO TO 1000 

15: direct(2) = 2*nmax 68: ELSE 

16: direct(S) - I ~9; maxnt = nc~iper - I 

17: dlrect(4) = -2*nmax ~O: maxmfl = locfir 
18: norlgl = S*nmax 61: 1060 IF (maxnfi.E@.O) GO TO 1080 

19: DO lO,i=l,norlgi-I 62: no~ = maxnfl 

20:  i0  l ~ t t ( i ) = b l o c k  5S: maxa f i  = eucc(no~)  
21:  avail(1) = 1 64: maxntn = m~xnt 

22: first(l) = norigi GS: DO lO?O,m=l,nnn 

23: latt(norigi) = reach 66: test = now + direct(m) 

24: avail(2) = Rnn 67: i070 IF(left(test) .GE.free)maxntn=maxntn+l 

25: . latt(norlgi-l) = count 68: g(maxoff+ma~tn) = g(maxoff+maxntn)+l 

20: eucc(norigi+2*nmax) = 0 09: GO TO 1060  

27: latt(norigl+2*nmax) = reach 70: 1080 CONTINUE 

20: succ(norigi+l) = norigi+2*nmax Tl: ENDIF 

29: latt(norigi+l) = reach 72: 1090 IF (locfir.E~.ne~di(~)) GO TO II00 

SO: f i r s t ( 2 )  = n o r i g i + l  73: latt(Iocfir) = f r e e  
SI: g(nnn) - i 74: locfir = succ(locfir) 

32:  e = 2 75 ;  GO TO 1090  

$8: maxoff = (nmax-l)*maxt 76: 1100 first(s) = locfir 

$4: golf = m&xt 77 :  IF (locfir. NE.O) GOTO I010 

$5: i000 IF (first(s).EQ.O) GO TO iii0 78: 1110 ~ = s-1 
~6: 1010 now = first(s) 79: golf = golf - maxt 

ST: locfir = eucc(now) 80: locfir = first(s) 

38: nevfi(s) = locfir 81: IF (e.GT.I) GO TO 1090 

$9:  newper = avail(s) - I 82 ;  DO 2000,t=l,maxt 

40: m=l 83: 2000 PRINT 2010,(g((s-l)*maxt+t),e=l,nmax) 

41: 1020 test = now + dlrect(m) 84: 2010 FORMAT(IOOIIO) 

42:  IF (latt(test)) I050,I030,I040 HE: END 

43: I0~0 succ(teet) = locfir 
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