
Journal of Statistical Physics, Vol. 58, Nos. 5/6, 1990

Lattice Animals: A Fast Enumeration Algorithm
and New Perimeter Polynomials

S. M e r t e n s ~

Received August 21, 1989

A fast computer algorithm for enumerating isolated connected clusters on a
regular lattice and its Fortran implementation are presented. New perimeter
polynomials are calculated for the square, the triangular, the simple cubic, and
the square lattice with next nearest neighbors.

KEY WORDS: Cluster enumeration; Fortran program; perimeter polyno-
mials.

1. I N T R O D U C T I O N

The problem of determining the number of finite clusters on a regular lat-
tice ("lattice animals" or "polyominoes") with given size s and perimeter t
arises mainly in the context of series expansions in percolat ion problems. (1)
If we denote this number (per lattice site) by g,l, the mean number per
lattice site of clusters of size s in the classical site percolation problem is
given through

(n ,) = ~ g~,pSq~
t

=: y D . (q) (1)

where p = 1 - q denotes the probabil i ty that a single lattice site has the
at tr ibute that makes it a cluster site. D s is usually called perimeter polyno-
mial Ds(1) =: gs gives the total number per lattice site of clusters of size s.
Consider, for example, the clusters of size 3 on the tr iangular lattice: There

Institut fiir Theoretische Physik, D-3400 G6ttingen, Federal Republic of Germany.

1095

0022-4715/90/0300-1095506.00/0 ~) 1.990 Plenum Publishing Corporation

1096 M ertens

are two of them with per imeter nine, and nine with per imeter ten, i.e.,
D3(q) = 2q 9 + 9q 1~

The ca lcula t ion of the gs, for large s quickly gets compl ica ted enough
to be bet ter put on a computer . An a lgor i thm for this cluster enumera t ion
was presented by M a r t i n (2) and Redner , (3) and per imeter po lynomia l s for
var ious latt ices have been ca lcula ted with it/5-11/ The enumera t ion time,

however, grows like the to ta l n u m b e r of clusters, i.e., exponent ia l with s.
This l imits the m a x i m u m calculable size s very soon.

In this commun ica t i on an a lgor i thm is presented which calculates the
per imeter po lynomia l s faster than the a lgor i thm of Mart in . A l though this
a lgor i thm, too, suffers from the exponent ia l g rowth of C P U time with
cluster size s, the gain in speed is sufficient to ob ta in new results even with
little c o m p u t e r time. These new per imeter po lynomia l s for the square, the
t r iangular , and the s imple cubic lat t ice and the square la t t ice with next
neares t ne ighbors (abbrev ia ted as nnSquare) are l isted in Append ix A.

There are m a n y things tha t can be ca lcula ted with the per imeter p o l y -

Table I. Total Number gs of Clusters Grouped by Sites a

Sites nnSquare Triangular Cubic

1 1 1 1
2 4 3 3
3 2O 11 15
4 110 44 86
5 638 186 534
6 3832 814 3481
7 23592 3652 23502
8 147941 16689 162913
9 940982 77359 1152870

10 6053180 362671 8294738
11 39299408 1716033 60494549
12 257105146 8182213 446205905
13 1692931066 39267086 3322769321
14 11208974860 189492795 24946773111
15 918837374 188625900446
16 4474080844
17 21866153748
18 107217298977
19 527266673134

~' The numbers for the simple square lattice up to s = 24 can be found in ref. 4. Bold numbers
are new to us. Note that our last three digits of g13 on the cubic lattice disagree with
Lam's. (a3~ Our value agrees, however, with that of ref. 8.

Lattice Animals: A Fast Enumeration Algori thm

Table I1. Coeff icients ~' for the Expansion of S (p) = ~" brP'-

1097

r Square nnSquare Triangular Cubic

1 4 8 6
2 12 32 18
3 24 108 48
4 52 348 126
5 108 1068 300
6 224 3180 750
7 412 9216 1686
8 844 26452 4074
9 1528 73708 8868

10 3152 206872 20892
11 5036 563200 44634
12 11984 1555460 103392
13 15040 4124568 216348
14 46512 499908
15 34788 1017780
16 197612 *2383596
17 4036 4648470
18 929368 11271102
19 * 702592
20 4847552
21 -7033956
22 27903296
23 -54403996

6
30

114
438

t542
5754

19574
71958

233574
870666

2696274
*10375770
30198116

122634404

a Bold coefficients are new to us. b23 for the square lattice has been obtained using g24 of ref. 4.
Note that b19 , b21 , and b23 of the square lattice are negative. The values marked with
asterisks confirm those in ref. 9.

nomia l s , bu t s ince this p a p e r is m a i n l y c o n c e r n e d wi th the a lgo r i t hm, on ly

two quan t i t i e s h a v e been o b t a i n e d f r o m the new da ta : T h e to t a l n u m b e r o f

c lusters of size s, g , (Tab le I), and the coeff icients of the series e x p a n s i o n

of the m e a n size of c lus ters at l ow densi t ies , S(p)=p-lZs2(ns)
(Tab le II) . T h e k n o w l e d g e of the p e r i m e t e r p o l y n o m i a l s up to a size Smax

a l lows the ca l cu l a t i on of gs up to s = Smax + 1 a n d the series e x p a n s i o n of
2 S up to order Smax-

2. T H E A L G O R I T H M

In 1981 R e d e l m e i e r (4) ca l cu l a t ed the to t a l n u m b e r of s -c lus ters on the

s imple q u a d r a t i c la t t ice up to a size of 24. A l t h o u g h s imi lar in the bas ic

2 See, however, ref. 5 for how to calculate g,ma~-- 2 and the series expansion up to order Sma ~ + 1
using graph-theoretic methods.

1098 M ertens

concept, his algorithm differs from that of Martin in some important
details which make the enumeration faster. In what follows the algorithm
of Martin is denoted algorithm M, the one of Redelmeier algorithm R.

Both algorithms generate all clusters up to a size Sma x in a recursive
manner, i.e., given any s-cluster, the algorithm builds all (s + 1)-clusters by
adding one new cluster site. If all possible (s + 1)-clusters with this par-
ticular s-cluster "parent" are generated, a new s-cluster has to be found
which again serves as a parent for a new generation (s + 1)-clusters. This
leads to depth-first traversal of a "family tree" of all clusters (to cite
Redelmeier). Each child cluster in the tree consists of its parent plus one
new cluster site. The choice of this new site underlies two restrictions which
ensure that each cluster appears exactly once in the tree. The first one is
due to the translational symmetry of the underlying lattice: Certain lattice
sites have to be nonaccessible ("blocked") for any cluster site (see Fig. la),
preventing the new cluster site from being placed there. The second restric-
tion is the requirement that the new cluster site has to be chosen so that
no older brother or ancestor's older brother in the tree contains it (Fig. lb).
As pointed out by Redelmeier, these two restrictions are sufficient to let
every node in the tree be different from every other.

Algorithm M realizes the second restriction through a prohibition
mechanism: Each time a site is removed from a current s-cluster, the
corresponding lattice site becomes "s-prohibited," i.e., is marked non-
accessible for all of the cluster's children and younger brothers. After every
possibility to create an s-cluster in this subtree has been explored, all
s-prohibited sites are "freed," i.e., are made accessible again and control is
passed to the (s -1) - c lus t e r ancestor node in the family tree. This
mechanism clearly fulfills the second restriction, but it requires extra
bookkeeping about the number of s-prohibited sites and their locations and

(a:J ~ (b)
Fig. 1. The x-sites of this square lattice are labeled "blocked" and the first site in the
hierarchy of cluster-sites is the site labeled 1, the "origin." This forces the left most site of the
bottom row of any cluster to be at the origin. The second restriction prevents an algorithm
from generating the 3-cluster in (b) which differs from that in (a) only in its sequence of
generated sites, indicated by the numbers 1, 2 and 3.

Lattice Animals: A Fast Enumeration Algori thm 1099

frequent modifications of lattice sites from "free" to "prohibited" and vice
versa, which is very time consuming.

While algorithm M uses the information of where not to place subse-
quent cluster sites, algorithm R passes the information of where to place
new cluster sites to each recursive invocation of the procedure. This
"untried set" contains all points that are adjacent to the parent cluster and
have not been used by the ancestors or the ancestors' older brothers. Algo-
rithm R was originally designed for the enumeration of clusters on the
square lattice, but the "untried set" ansatz is a very powerful mechanism to
traverse the "family tree" on general lattices. It reduces the necessary
bookkeeping by a decent amount, making the traversal of the tree much
faster than the prohibition ansatz of algorithm M. Avoiding the explicit
construction of clusters (see below), Algorithm R can be made even faster.
The fast tree-traversing-capability of algorithm R is one reason why I
borrow the "untried set" idea from Redelmeier. The other reason is that
this technique facilitates the calculation of the perimeter, as is shown
below.

The following routine is given such an untried set, the size s of the
cluster to be generated, and the perimeter t of the parent (s-1)-c luster .
The steps 1,..., 4 are then repeated until the untried set is exhausted. Each
i t e ra t ion generates a child of the parent and each recurs ion all of the off-
spring of that child.

1. Remove an element from the untried set.

2. Determine "free" and "blocked" neighbors of this point; nn :=
number of these new neighbor sites.

3. Count new cluster: Increase gs, t+nn-1 by one.

4. If S<Smax:
(a) Add "free" new neighbors to the untried set and label corre-
sponding lattice sites "reachable."
(b) Call this routine recursively with the current untried set, t :=
t + n n - 1 a n d s : = s + l .
(c) Remove new neighbors from the untried set and relabel
corresponding lattice sites "free."

At any one time, each lattice site (excluding the "blocked" ones) is either
"reachable" (i.e., an element of the current untried set or the untried set of
an older brother) or "free." The algorithm is started with all lattice sites
being "free" (besides the "blocked" sites and the "origin" in Fig. la, which
is "reachable"), the untried set containing only the "origin," t = 0 and s = 1.
The fact that in step 1 an element is taken from the untried set without
labeling the lattice site "free" corresponds in a way to the "prohibition"

1100 Mertens

mechanism in algorithm M: Keeping this site "reachable" prevents it from
being added to an untried set somewhere in the recursive offspring of that
node.

As discussed by Redelmeier, the untried set can be coded as a linked
list, which makes the necessary operations on it (adding and removing
elements and passing it as a parameter) very effective and therefore very
fast. The use of the untried set, moreover, has the advantage that the
cluster-perimeter can be traced with almost no extra effort, since the new
neighbors of an added cluster site (step 2) have to be determined anyway
to update the untried set in step 4a. It should be noted that the above algo-
rithm avoids the explicit construction of a cluster, i.e., labeling the lattice
site just taken from the untried set in step 1 as "occupied" as in
Redelmeier's original algorithm. This is not necessary, because the relevant
information is wether a lattice site is accessible in the current node and not
the reason for its nonaccessibility, i.e., whether it is an element of the
current cluster or a former element of one of its older brothers.

A quantitative comparison of this algorithm with algorithm M in
terms of CPU time will be given in the next section.

3. A F O R T R A N I M P L E M E N T A T I O N

For the sake of simplicity a little complication has not been mentioned
in the preceding section: The counting of "blocked" neighbors. To deter-
mine the correct perimeter, the algorithm has to ensure that no "blocked"
site is counted more than once as a perimeter site. This problem is most
easily dealt with in the square lattice, since here the only site in the
"blocked" area that can be a neighbor of more than one cluster site is the
left neighbor of the "origin." In this case, we start the algorithm with the
1-cluster instead of the 0-cluster and label the left neighbor of the origin
"counted" since it has already contributed to the perimeter of the 1-cluster.
For other lattices (such as the triangular lattice, for example), each
"blocked" site which is adjacent to the "free" area can be a neighbor of two
(or more) cluster sites. One is therefore forced to trace the "blocked" sites
counted in step 2. This can be achieved by labeling them "counted" in
step 4a and relabeling them "blocked" in step 4c.

A Fortran program for the calculation of perimeter polynomials in the
square lattice is listed in Appendix B. The two-dimensional lattice is stored
in the linear list la t t [1. . .nlat t] , nnn denotes the number of nearest
neighbors and direet[l . . .nnn] contains the adjacency vectors which give
the nearest neighbors of any site, nsmax denotes the maximum cluster size
to be generated and maxt the maximum perimeter that can occur. The
perimeter of the current s-cluster is stored in avail(s), the coefficients of the

Lattice Animals: A Fast Enumerat ion A lgo r i t hm 1101

perimeter polynomials in the linear list g. The variables suec, first, and
newfi are used for coding the untried set as a linked list; see ref. 4 for a
detailed description of this method. The rest of the variables are mainly
dummy variables to avoid time-consuming operations on array variables or
offset variables used to code g,~ as a linear list.

The initialization of the lattice, the 1-cluster, and its untried set takes
place between lines 12 and 34. In lines 35...39 an element is removed from
the untried set, in lines 40...48 the neighborhood of this site is explored
and the free neighbors are added to the untried set. The new cluster is
counted in line 50. If the current cluster size s is smaller than Smax- 1, the
procedure is called recursively (lines 52...57). Otherwise, only the number
of neighbor sites of each of the possible Smax-Clusters is calculated (lines
59... 70). The recently added neighbors are removed from the untried set in
lines 72... 76. If there are still elements in the current untried set, the proce-
dure is iterated (line 77), otherwise it returns to the parent node (lines
78...81) or finally shows the results and stops.

The presented Fortran program can be made faster at the price of
more lines of code. For example, in the loop between lines 41 and 48 the
loop variable m always runs from 1 to 4 (the number of nearest neighbors).
A replacement of this loop with four replicas of the loop's body saves a lot
of index calculations, since direction(m) can be replaced by direction(I)...
direction(4) and the index calculation is done at compile rather than at run
time. Another means to improve the performance is provided by the fact
that only one site of the four neighbors of a given cluster site can eventually
be in the "blocked" area. Therefore the detailed test in line 42 can be
replaced by a simpler (and faster) one in three of four cases. For the quad-
ratic lattice, this modifications improve the performance by about 24%
(see Table III); for other lattice types the gai n in speed is even higher, espe-
cially for lattices with high coordination numbers.

In Table lII, the performance of the presented Fortran program (and
its "tuned" version as described above) is compared to Redner's implemen-
tation of algorithm M. It can be seen that Redner's program is about 46 %
slower than the fast version of the presented Fortran progran] despite the
fact that Redner's program only calculates the total number of s-clusters.
Actually, this should make it faster than any calculation of the full
perimeter polynomials. Demme and Diemer (12) presented a modification of
algorithm M which enumerates clusters about 2 times faster than the
original implementation of Redner, where 2 ~ coordination number of the
lattice. They used the fact that it suffices to explore the "family tree" down
to the nodes with s = Smax -- 1 if one introduces an additional bookkeeping
about the accessible perimeter sites of a cluster. This corresponds to the
fact that the total number of clusters of size s can be calculated from the

1102 Mertens

Table II1. To ta l CPU T ime (in sec) on an A p o l l o DN 4500 Workstation
for the Enumeration of Lattice Animals on the Square La t t i ce a

Presented algorithm
Algorithm M

sma x (program of ref. 3) Program as listed Fast version

12 5.4 4.9 3.8
13 20.3 18.4 14.0
14 79.1 68.6 54.5
15 291.7 262.7 199.2

a An IBM 3090 is about three times faster, but gives about the same speed ratios. Notice that
algorithm M only enumerates the total numbers of s-clusters, while the algorithm presented
here also gives their perimeter.

perimeter polynomial with s - 1 . The performance of the program of
Demme and Diemer for Sm~x therefore has to be compared with the perfor-
mance of the presented program for Sma x -- 1. It turns out that the Demme
and Diemer version of Algorithm M is about 68 % slower (for the square
lattice) than the fast version of our program and our algorithm could be
made even faster for the simpler task of calculating the total number of
clusters.

APPENDIX A. NEW PERIMETER P O L Y N O M I A L S

In this Appendix, perimeter polynomials for various lattice types
(square, triangular, cubic, square with next nearest neighbors) are pre-
sented which seem new (Tables IVA-IVD). The used CPU time as back-
ground processes on an Apollo DN 3500 or 4500 workstation ranges from
about 30 h for the square lattice with next nearest neighbors (Smax = 13) up
to about 1 month for the square lattice (Smax = 22). The g~t for smaller
values o f s can be found in ref. 5 (square), ref. 11 (nnsquare), refs. 5 and 10
(triangular), and ref. 6 (cubic).

Duarte (14) calculated (among other things) all g~t for t~< 16 on the
square lattice. His values are confirmed.

Lattice Animals: A Fast Enumeration Algorithm 1103

Table IVA. New Perimeter Polynomials for Square Lattice

t s = 18 s = 19 s - 2 0 s = 2 1 s = 2 2

14 4 0 0 0 0

15 396 124 28 4 0

16 8146 3982 1730 651 206

17 77042 49820 29263 15664 7632

18 498510 386626 277540 184792 114170

19 2375948 2185492 1842286 1442972 1058218

20 8892252 9568542 9371179 8467282 7137662

21 26424552 33581728 38089751 39444812 37849142

22 63570106 95790204 126608106 150367840 163610644

23 124322284 224749652 348128020 476549024 589572902

24 198771190 435951906 799099308 1268641853 1792118418

25 260020876 701526660 1537756259 2855017064 4634111086

26 278241194 937190080 2487219956 5453409264 10245773246

27 242759710 1038528312 3382206302 8855133452 19431734658

28 171725416 952066016 3863223002 12226523903 31651808512

29 97636026 718391056 3696468187 14336402380 44276317808

30 44239618 443166310 2950845400 14242603046 53124561334

31 15780916 221576912 1953171286 11942529948 54546106532

32 4382132 88988542 1064426530 8409232029 47767546994

33 928608 28363508 473427096 4940061004 35515036016

34 147426 7090716 170289758 2403638058 22294159292

35 16792 1362772 48953476 960196876 11737001634

36 1332 197494 11108759 312084862 5144218940

37 64 20636 1950048 81552556 1861029946

38 2 1516 259508 16916512 550671010

39 0 68 25096 2729340 131694496

40 0 2 1712 335497 25121626

41 0 0 72 30100 3745232

42 0 0 2 1920 427292

43 0 0 0 76 35808

44 0 0 0 2 2140

45 0 0 0 0 80

46 0 0 0 0 2

1104 Mertens

Table IVB. New Perimeter Polynomials for Square Lattice
wi th Next Nearest Neighbors

t s = 11 s = 12 s = 13

18 8 2 0
19 16 0 0
20 298 151 68
21 972 524 192
22 3768 2486 1554
23 12076 9580 6796
24 33442 30739 23701
25 81668 84477 77928
26 185898 223164 230904
27 374564 518884 596864
28 703094 1104476 1461950
29 1179252 2180318 3246404
30 1867098 3976698 6661962
31 2653520 6601780 12785416
32 3500572 10362729 22810042
33 4253768 14867879 37555092
34 4741066 19827396 58372070
35 4790232 24605800 84302484
36 4481228 28261864 113533120
37 3747168 29863552 142979396
38 2842960 29266646 168351436
39 1878600 26269734 184110852
40 1095812 21495975 187495542
41 543908 15838460 176766448
42 230056 10522966 154250074
43 75480 6118796 123080096
44 18998 3135682 89906050
45 3396 1365574 58994028
46 452 494560 34776132
47 36 138764 17998340
48 2 30132 8167838
49 0 4756 3119288
50 0 560 976976
51 0 40 239116
52 0 2 45753
53 0 0 6428
54 0 0 680
55 0 0 44
56 0 0 2

Lattice Animals: A Fast Enumeration Algorithm 1105

Table lVC. New Perimeter Polynomials for Triangular Lattice

t s = 16 s = 17 s = 18

17 6 0 0

18 290 87 14

19 3147 1458 613

20 21924 13074 6864

21 117632 81606 52419

22 514503 411546 305656

23 1920135 1743216 1446105

24 6259778 6350256 5974463

25 17891511 20551044 21301341

26 45442314 58642875 68191791

27 102050537 150320514 194840911

28 203225319 343641300 501155544

29 355865085 702686730 1164695703

30 545610411 1280881581 2432848553

31 723205227 2066045316 4578711889

32 813752322 2934136986 7712998128

33 757005387 3618901248 11567355829

34 550789344 3804395967 15337518381

35 277984614 3310771548 17794834867

36 72421358 2250460905 17506888220

37 0 1059161730 14319930851

38 0 256954761 9135628605

39 0 0 4028224110

40 0 0 914388120

1106 Mertens

Table IV D. N e w Perimeter Polynomials for Simple Cubic Lattice

t s = 12 s = 13 s = 14

26 9 0 0

27 0 0 0

28 432 48 0

29 4668 132 0

30 25440 3673 412

31 138904 25568 1908

32 620231 146086 24378

33 2097936 729428 159144

34 5926745 2907755 839738

35 13865948 9634686 3801489

36 27402345 26792718 14333094

37 45460473 64142668 45462840

38 63712706 131866119 125799096

39 75644082 233643764 303030330

40 75589074 356875730 641449368

41 62963158 470803212 1189701924

42 42141124 536248708 1937592309

43 21088314 523333552 2772958188

44 7408509 432412758 3483707502

45 1785240 294422852 3833369250

46 294660 156471102 3665727768

47 33264 61279704 3009350772

48 2520 17123236 2075360802

49 120 3383940 1153919334

50 3 472431 492225102

51 0 46220 155424804

52 0 3096 35770806

53 0 132 5974992

54 0 3 721578

55 0 0 62304

56 0 0 3732

57 0 0 144

58 0 0 3

Lattice Animals: A Fast Enumeration Algorithm

A P P E N D I X B. A F O R T R A N P R O G R A M FOR
T H E S Q U A R E LATTICE

1107

I: PARAMETER(nmax=i2,nnn=4, 44: locflr = test

2; *maxt=2*nmax+2,nsize=nmax*mazt, 45: iLtt(test) = re~ch

3: +nlatt=2*nmax*(nmax+2)+l) 46: 1040 newper = newper+l

4: INTEGER free,block,reach, 47: 1050 m = m+l

5: +comlt,g(neize),latt(nlath), 48: IF (m.LE.nnn) 00 TO 1020

6; +succ(nlatt),direct(nnn), 49: offset = goff + newper

7: +avail(nmax),firet(nmax), ~0: g(offeet) = g(offeet)+l

8: +newfi(nmax),s,t,test, 51: IF (s.LT.nmax-l) THEN

9: +golf,offset 52: first(s) = locfir

i0: PAHANETER(count=-2,reach=-l, 5S: s = s+l

ii: +free-O,block=l) 54: Eof~ = golf + maxt

12: DATA latt/nlatt*free/, 55: ava/l(s) = ne~er

IS: +succlnlatt*O/,g/nsiza*O[56: first(s) = l o c f i r
14: direct(1) = -i 57: GO TO 1000

15: direct(2) = 2*nmax 68: ELSE

16: direct(S) - I ~9; maxnt = nc~iper - I

17: dlrect(4) = -2*nmax ~O: maxmfl = locfir
18: norlgl = S*nmax 61: 1060 IF (maxnfi.E@.O) GO TO 1080

19: DO lO,i=l,norlgi-I 62: no~ = maxnfl

20: i0 l ~ t t (i) = b l o c k 5S: maxa f i = eucc(no~)
21: avail(1) = 1 64: maxntn = m~xnt

22: first(l) = norigi GS: DO lO?O,m=l,nnn

23: latt(norigi) = reach 66: test = now + direct(m)

24: avail(2) = Rnn 67: i070 IF(left(test) .GE.free)maxntn=maxntn+l

25: . latt(norlgi-l) = count 68: g(maxoff+ma~tn) = g(maxoff+maxntn)+l

20: eucc(norigi+2*nmax) = 0 09: GO TO 1060

27: latt(norigl+2*nmax) = reach 70: 1080 CONTINUE

20: succ(norigi+l) = norigi+2*nmax Tl: ENDIF

29: latt(norigi+l) = reach 72: 1090 IF (locfir.E~.ne~di(~)) GO TO II00

SO: f i r s t (2) = n o r i g i + l 73: latt(Iocfir) = f r e e
SI: g(nnn) - i 74: locfir = succ(locfir)

32: e = 2 75 ; GO TO 1090

$8: maxoff = (nmax-l)*maxt 76: 1100 first(s) = locfir

$4: golf = m&xt 77 : IF (locfir. NE.O) GOTO I010

$5: i000 IF (first(s).EQ.O) GO TO iii0 78: 1110 ~ = s-1
~6: 1010 now = first(s) 79: golf = golf - maxt

ST: locfir = eucc(now) 80: locfir = first(s)

38: nevfi(s) = locfir 81: IF (e.GT.I) GO TO 1090

$9: newper = avail(s) - I 82 ; DO 2000,t=l,maxt

40: m=l 83: 2000 PRINT 2010,(g((s-l)*maxt+t),e=l,nmax)

41: 1020 test = now + dlrect(m) 84: 2010 FORMAT(IOOIIO)

42: IF (latt(test)) I050,I030,I040 HE: END

43: I0~0 succ(teet) = locfir

A C K N O W L E D G M E N T S

I thank D. Stauffer and J. A. M. S. Duarte for constructive suggestions
on the manuscript and U. Schulz for his help with the computer system. All
calculation were performed on the Apollo DN 3500/4500 workstations of
the Institut f/Jr Theoretische Physik der Universit/it G6ttingen.

1108 Mertens

R E F E R E N C E S

1. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985), and
references therein.

2. J. L. Martin, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M.S.
Green, eds. (Academic Press, New York, 1974), pp. 97-112.

3. S. Redner, J, Stat. Phys. 29:309 (1982).
4. D. H. Redelmeier, Discr. Math. 36:191 (1981).
5. M. F. Sykes and M. Glen, J. Phys. A: Math. Gen. 9:87 (1976).
6. M. F. Sykes, D. S. Gaunt, and M. Glen, J. Phys. A: Math. Gen. 10:1705 (1976).
7. D. S. Gaunt, M. F. Sykes, and H. Ruskin, J. Phys. A: Math. Gen. 9:1899 (1976).
8. M. F. Sykes and M. K. Wilkinson, J. Phys. A: Math. Gen. 19:3407 (1986).
9. M. F. Sykes and M. K. Wilkinson, J. Phys. A: Math. Gen. 19:3415 (1986).

10. A. Margolina, Z. V. Djordjevic, D. Stauffer, and H. E. Stanley, Phys. Rev. B 28:1652
(1983).

11. H. R Peters, D. Stauffer, H. P. H61ters, and K. Loewenich, Z. Physik B 34:399 (1979).
12. E. S. Demme and K. Diemer, J. Undergrad. Res. Phys. 3:25 (1984).
13. P. M. Lam, Phys. Rev. A 34:2339 (1986).
14. J. A. M. S. Duarte, Portgal. Phys. 12:99 (1981).

