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Phase Transition in Multiprocessor Scheduling
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An ‘‘easy-hard’’ phase transition is shown to characterize the multiprocessor scheduling problem in
which one has to distribute the workload on a parallel computer such as to minimize the overall run
time. The transition can be analyzed in detail by mapping it on a mean-field antiferromagnetic Potts
model. The static phase transition, characterized by a vanishing ground state entropy, corresponds to a
transition in the performance of practical scheduling algorithms.
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including finite size corrections by mapping the prob-
lem on an antiferromagnetic Potts model. Finally, we
identify dynamical consequences of this phase transition

exponential number of schedules. Numerical simula-
tions [7] in fact indicate that the probability that a ran-
dom instance has a perfect schedule decreases from 1 for
Statistical mechanics has been dramatically expand-
ing its range of applicability in the past years and con-
tinues to do so. Among the more promising directions is
the analysis of problems in computational complexity
[1,2]. Here the relevant questions can often be formulated
in a manner surprisingly similar to well-established prob-
lems in statistical mechanics, they are concerned with the
scaling behavior of systems in a suitably defined thermo-
dynamic limit, and there is an impressive background of
‘‘experimental data’’ in the form of extensive simulation
results produced by computer scientists.

A central issue in this field is the identification and
characterization of different types of phase transitions
in randomly generated instances of NP-hard prob-
lems. Contrary to the worst-case oriented methodology
of computer science, statistical mechanics is able to de-
scribe the typical complexity of a problem which is often
more relevant for practical applications. Often one may
identify regions in the parameter space where typical
instances can be solved without exponential search, sepa-
rated from other regions where exponential search is
mandatory. With increasing size N of the problem, the
transitions between these regions become sharp and ex-
hibit properties as known for phase transitions in statis-
tical mechanics. A transition in the typical algorithmic
complexity normally corresponds to a structural change
in the typical instances of the random ensemble. The
latter in turn can be analyzed using the methods and
notions from statistical mechanics [1]. An outstanding
example for the fruitfulness of this interdisciplinary ap-
proach is the analysis of K satisfiability with the replica
[3] and the cavity method [4].

In the present Letter, we show that the problem of load
balancing, i.e., of evenly distributing the workload on the
processors of a parallel computer, exhibits such an ‘‘easy-
hard’’ phase transition. We identify the control parame-
ter of this transition and analytically calculate its value
0031-9007=03=90(15)=158701(4)$20.00 
in extensive numerical simulations using a particular
algorithm.

In the multiprocessor scheduling problem (MSP), we
are given q identical processors and N independent tasks
with running times ai 2 N.We are then required to find a
schedule, i.e., an assignment of the N tasks to the q
processors such as to minimize the largest task finishing
time (makespan). MSP is an NP-hard problem [5,6],
which basically means that no one has ever found a
solution algorithm that is (for the worst case) significantly
faster than exhaustive search through all O�qN� possible
schedules. On the other hand, numerical experiments [7]
with ai being random B-bit integers reveal two distinct
regimes: For small values of � � B=N, typical instances
can be solved without exponential search, whereas for
large values of � exponential search is needed.

To analyze the situation analytically, we define a sched-
ule as a map s : f1; . . . ; Ng � f1; . . . ; qg with s�i� � �
denoting that task i is assigned to processor �. The
problem is then to minimize the makespan,

T�s� � max
�

�
A� �

XN
i�1

ai��s�i� � ��
�
: (1)

A� is the total workload of processor � and � is the usual
Kronecker symbol. The structural change in MSP that
lies underneath the algorithmic phase transition is the
appearance of perfect schedules. Let r �

P
j ajmod q

and bxc � maxfnjn � x; n 2 Zg. A schedule with

A� �

$
1

q

XN
j�1

aj

%
�

�
1 if 1 � � � r
0 if r < � � q

(2)

[and its �
q
r � equivalent rearrangements] is called perfect

since it obviously minimizes the makespan T, Eq. (1).
Whenever an algorithm runs into a perfect schedule, it
can stop the search possibly before having explored an
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� � 0 to 0 as � � 1, and for large N the probability
jumps abruptly from 1 to 0 as � crosses a critical value
�c�q�.

It is convenient to encode the schedules using Potts
vectors [8] since these reflect the symmetry of the prob-
lem: All that matters is whether two tasks are on the same
processor or not. See [9] for other optimization problems
that can be encoded with Potts vectors. Potts vectors ~ee���

are �q� 1�-dimensional unit vectors pointing at the q
corners of a �q� 1�-dimensional hypertetrahedron (see
Fig. 1 for the case q � 3). This implies that the angle
between two Potts vectors is the same for all pairs of
different vectors,

~ee��� 
 ~ee��� �
q���� �� � 1

q� 1
: (3)

A schedule is encoded by N Potts vectors ~ssj, where ~ssj �
~ee��� means that task j is assigned to processor �, i.e.,

~ssj �
Xq
��1

��s�j� � �� ~ee���: (4)

The target vector,

~EE�f~ssg� �
XN
j�1

aj ~ssj; (5)

encodes the running time of all processors,

A� �
1

q

XN
j�1

aj �
q� 1

q
~EE 
 ~ee���; (6)

and minimizing T, Eq. (1), is equivalent to minimizing
~EE with respect to the supremum norm [10].

For integer values aj, the minimal change of a schedule
is to remove 1 from one processor and add it to one of the
other q� 1 processors. Hence, possible values of ~EE�f~ssg�
are points on a �q� 1�-dimensional Bravais lattice with
primitive vectors,

~bb� � ~ee��� � ~ee�q� � � 1; . . . ; q� 1: (7)
FIG. 1. Lattice of target vectors for q � 3 with the three
Potts vectors (gray) and the two primitive vectors ~bb� (black).
The white (gray, black) lattice points correspond toP
ajmod 3 � 0�1; 2�.
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These primitive vectors span a sublattice of the lattice
generated by q� 1 Potts vectors. The sublattice contains
every qth point of the Potts lattice and, correspondingly,
there are q classes of such lattice points depending onP
ajmod q (Fig. 1). The volume V�q� of the primitive cell

in our sublattice can be calculated from the Gram deter-
minant,

V2�q� � det� ~bb� 
 ~bb�� �
qq

�q� 1�q�1 : (8)

The average number � of schedules with target ~EE is

�� ~EE� � Trf~ssg

�
�
�
E�

XN
j�1

aj ~ssj

	

; (9)

where h
i denotes averaging over the independently
and identically distributed random numbers aj. For fixed
schedule f~ssjg and large N, the sum

P
N
j�1 aj ~ssj is Gaussian

with mean

h ~EEi � h�E1; . . . ; Eq�1�i � hai
XN
j�1

~ssj �: hai ~MM; (10)

and covariance matrix,

hEiEki � hEiihEki � �2
a

XN
j�1

�~ssj�i�~ssj�k �: �2
agi;k; (11)

with �2
a � ha2i � hai2. The ‘‘magnetization’’ ~MM and the

variance matrix g � �gi;k� depend on the schedule only
through the numbers N� �

PN
j�1 ��s�j� � �� of tasks

assigned to processor �:

~MM �
Xq
��1

N� ~ee
��� gi;k �

Xq
��1

N�e
���
i e���k : (12)

The trace over f~ssg is basically an average over all tra-
jectories of a random walk in q� 1 dimensions. For large
N, this average is dominated by trajectories with ~MM � 0,
i.e., N� � N=q. For these trajectories, the matrix g is
diagonal,

gi;k �
��i� k�
q� 1

; (13)

and we have basically an independent random walk in
each of the q� 1 directions of our lattice. The probability
to occupy after N steps a position E� away from the
origin in direction � is therefore given by

p�E�� �

������������
q� 1

p

�������������������
2"Nha2i

p exp

�
�
�q� 1�E2

�

2Nha2i

	
: (14)

The probability of finding the q� 1 walkers at ~EE reads

p� ~EE� �
�
�q� 1�

2"Nha2i

	
�q�1�=2

exp

�
�

�q� 1�j ~EEj2

2Nha2i

	
: (15)

To get the number of schedules with given target vector
158701-2
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FIG. 2. Numerical measurements of � for q � 3. Symbols
are averages over 103 random instances with

P
j ajmod q � 0;

lines are given by Eq. (18). The error bars of the enumeration
data are smaller than the symbols.
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FIG. 3. �c from linear regression of the numerical data for �
(symbols) compared to Eq. (19) (curves).
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~EE, we have to multiply the density p� ~EE� by qN and the
volume V�q� of the primitive cell of our Bravais lattice:

�� ~EE� �
qNqq=2

�2"Nha2i��q�1�=2
exp

�
�

q� 1

2Nha2i
j ~EEj2

	
: (16)

Note that, as long as j ~EEj � O�1� for N ! 1, �� ~EE� is
almost independent of j ~EEj; i.e., there are as many perfect
schedules as there are any suboptimal schedules with
j ~EEj � O�1�.

The density of scalar quantities like j ~EEj gets a factor
j ~EEjq�2 from the volume element in �q� 1�-dimensional
spherical coordinates. For q > 2 this leads to a maximum
of the microcanonical entropy at some value j ~EEj > 0, and
this maximum gets sharper with increasing q, a scenario
that has been observed in Monte Carlo simulations [13].
However, this implies no fundamental difference between
q � 2 and q > 2 as claimed in [13] but is of purely
geometrical origin.

For the location of the phase transition, we can con-
centrate on perfect schedules, i.e., we set j ~EEj � O�1�. In
accordance with common simulation practice, we assume
that the aj are uniformly distributed �N-bit integers.
From

ha2i � 1
3 2

2�N�1�O�2��N��; (17)

we get

log2��0� � N�q� 1���c � ��; (18)

with

�c �
log2q
q� 1

�
1

2N
log2

�
2"N

3qq=�q�1�

	
: (19)

The leading term in this expression can be intuitively
understood by the following heuristic argument [7]:
Given the values of the ai are �N-bit integers, the work-
loads defined by Eq. (2) are (neglecting for the moment
carry bits) also �N-bit integers. The probability that a
randomly chosen schedule s�i� realizes a particular value
of A1 is therefore 2��N . Neglecting correlations, the
chance to realize all the workloads defined in Eq. (2) is,
hence, 2��q�1��N (Aq is fixed implicitly). Since there are
qN different schedules, the number of perfect ones is
roughly given by qN2��q�1��N . This number is large for
small � but becomes exponentially small for � > �c �
log2�q�=q� 1. The second term in Eq. (19) represents
finite size corrections to this leading behavior. For q � 2,
Eqs. (18) and (19) reduce to the known results for number
partitioning [14,15].

According to Eq. (18), the ground state entropy
log2��0� is a linear function of � for large N. In fact,
this linearity already holds for rather small values ofN, as
can be seen from numerical enumerations (Fig. 2). Linear
regression on the data for log2��0� gives numerical val-
ues for �c�N�. These values in turn agree well with the
predictions of Eq. (19) for larger values of N (Fig. 3).
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For � > �c, Eq. (16) predicts that the expected number
of target vectors decays exponentially with N for any
fixed ~EE. The integrated density is finite, however. From
numerical simulations we know that in this regime the
ground state is unique up to permutations, the average
ground state energy E0 is, hence, implicitly given byR
E0 dq�1E �� ~EE� � q!, or

E0 �

������������������
2N

3�q� 1�

s ��������������������������
q!�

�
q� 1

2

	
q�1

s
2N����c�: (20)

This equation agrees very well with the numerics [16] and
with the known results for q � 2 [14,15].

Until now, we have discussed static properties of the
random MSP. How do they affect the dynamical behavior
of search algorithms? An obvious algorithm is to sort the
158701-3
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FIG. 4. Number of nodes traversed by the complete greedy
algorithm for q � 3 and fixed number of bits B. The circles
mark the critical system size Nc given by Eq. (21).
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tasks ai in decreasing order and to assign the first (and
largest) task to processor 1. The next tasks are each
assigned to the processor with the smallest total workload
thus far. Proceed until all tasks are assigned. Ties are
broken by selecting the processor with the lower rank.
This so-called greedy heuristics usually produces poor
schedules, but it can be extended to an algorithm that
yields the optimum schedule. Instead of assigning a task
to one processor, the extended algorithm branches: In
the first branch it follows the heuristic rule and assigns
the task to the processor with the lowest workload; in the
second branch it selects the processor with the second
lowest workload, and so on. Ignoring ties this algorithm
generates the complete search tree with its qN leaves and,
hence, will eventually find the true optimum. This algo-
rithm is known as complete greedy algorithm (CGA) [17].
Of course it is exponential in the worst case but with
pruning we can hope to achieve a speedup for the typical
case. The most efficient pruning rule is to simply stop the
moment one hits upon a perfect schedule. Another prun-
ing rule applies if the sum of the unassigned tasks is
smaller than the difference between the current maximal
and minimal workloads. In this case, one can simply
assign all remaining tasks to the processor with the
minimum workload.

In our simulations we fix the number B of bits in the aj
and measure the number of nodes traversed by CGA as a
function of N. In this case �c translates into a critical
value Nc for the system size, Nc being the solution of

B
Nc

�
log2q
q� 1

�
1

2Nc
log2

�
2"Nc

3qq=�q�1�

	
: (21)

Figure 4 shows a typical result for q � 3. For N <Nc, the
number of nodes traversed by CGA increases like 3xN

with x � 0:84. The fact that x < 1 is due to the pruning.
As soon as N > Nc, the pruning by perfect solutions
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takes effect and the growth slows down significantly.
Eventually the search costs even decrease with increas-
ing N. This indicates that the algorithm takes advantage
of the growing number of perfect solutions, although
their relative number is still exponentially small. There
are algorithms that outperform simple CGA, but the
differences show up only for N > Nc: With better algo-
rithms, the subexponential growth and the decrease of the
search costs set in at values of N closer to Nc [17].

In conclusion, we have shown that multiprocessor
scheduling has a phase transition controlled by the vari-
ance in size of the individual tasks. The ‘‘easy’’ phase is
characterized by an exponential number of perfect sched-
ules, the ‘‘hard’’ phase by the absence of perfect sched-
ules. Compared to the analysis of the special case q � 2
in [14], our ‘‘microcanonical’’ approach is more trans-
parent and requires no ad hoc measures to cope with a
negative ground state entropy.
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