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There has to be a follow-up to my last essay on the Doppler effect, where I stated that I
don’t know of any derivation of the velocity Doppler effect based on energy conservation.
Stefano Quattrini pointed out a few papers to me where energy conservation is indeed used in
derivations of variants of the Doppler effect.

However, the way it is used does not suggest the Doppler effect to be a consequence of energy
conservation, so I would still be reluctant to say that these derivations are based on energy
conservation. The Doppler “effect” essentially is the transformation law for frequencies be-
tween different frames of reference. It is not a physical process. If the frequency of the waves
under consideration can be related to an energy, which certainly is the case for photons or
phonons, then you may be able to derive the transformation law for frequencies from the
known transformation laws for energy and momentum of non-wavy objects, if you can express
the energy and momentum connected with the wave properties (i.e., frequency, wave vector)
by the energies of those objects involved in an interaction process with the wave. The con-
servation laws hold in either frame. The energy-momentum of the photon, say, can then be
expressed by differences of energy-momenta of other objects and knowing how to transform
these, you will get the transformation laws for the frequency and wave vector, i.e., the Doppler
effect and aberration.

Hence, the application of the conservation laws to some process (which itself is not the Doppler
effect) in two frames may allow you to derive the Doppler effect. Since there are other methods
to obtain it, I would consider this an auxiliary use of the conservation laws, rather than
a fundamental one. Just that the frequencies involved in the Doppler effect appear in a
law of energy conservation should not be taken as indication that the effect follows from
energy conservation. What it shows at best is that the effect is not incompatible with energy
conservation, and this is of course to be expected.

This, I believe, should at least be maintained for the basic Doppler effect, describing a frequency
change between different frames of reference. In this essay, I will however mostly consider the
double Doppler effect, a notion I take from Ref. [1].1 This concept is useful in the description
of Doppler radar velocity measurements, where an electromagnetic wave is sent to an object
from which it is reflected back to the emitter. The frequency change between the emitted
and reflected waves is the ratio of two frequencies in a single frame of reference (that of the
emitter), so its relationship to energy conservation is certainly worth discussion.

Before describing and analysing the experiment as well as deriving an exact double Doppler
formula for the case, where recoil effects on the reflecting object are taken into account, I would
like to make a small detour highlighting the relationship between kinematics and dynamics
for another phenomenon, which is not a process either, viz. the relativistic length contraction.
There are analogies between the way kinematics and dynamics get intertwined in discussions
of length contraction and those of the Doppler effect.

1My own name for it was two-way Doppler effect. The basic Doppler effect would then be the one-way Doppler
effect. One analogy with the two-way and one-way speeds of light is that the two-way effect can be calculated
easily from the one-way case, but not vice versa. Knowledge of the two-way speed of light does not allow you to
calculate the one-way speed of light without further information, in this case on the synchrony. Knowledge of the
frequency shift of the two-way Doppler effect does not allow you to derive the one-way effect without additional
information. In the electromagnetic case in vacuum, such a piece of information would be the relativity principle,
i.e., a statement about the relationship between physical laws in different frames of reference.
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Length contraction

In his paper introducing special relativity [2], Einstein discusses the “relativity of lengths and
times”, including the phenomenon that a length will be measured2 to be shorter in an inertial
frame in which it is moving than in its (momentary inertial) rest frame, but he never uses the
name of length contraction that has caught on since. Actually, this is a misnomer, because no
process of contraction is involved. Rather, it means that the length of an object in a given
state of motion is measured to be different in a frame where it is at rest than in a frame where
it is moving, and it is shorter in the latter frame than in the former, by a factor depending
on the relative velocity of the two frames only. So it is the same object in one state having
different lengths in two different frames, not one object having different lengths in the same
frame in two different states of motion.3

Yet it is the latter situation that is often considered to correspond to the meaning of length
contraction, and not necessarily for bad reasons. When a spaceship is accelerated from rest to
a certain velocity and coasts without acceleration afterwards, then its length changes between
take-off and the final constant-velocity state. It really contracts and this is a dynamical process,
due to the fact that an acceleration program thrusting the craft ahead in a way that keeps
mechanical stresses inside small (avoiding to destroy the spaceship) must accelerate the tip of
the rocket less than the bottom. This way the length of the craft shrinks in the stationary
frame (from which take-off took place), while all proper lengths aboard including the total
length of the craft remain roughly constant (and take exactly their original values once the
engine is switched off and external mechanical forces disappear). Clearly, this dynamical length
contraction is described by the same formula as the kinematical one introduced by Einstein,
provided the spaceship’s rest length before acceleration was the same as its rest length is now,
in the constant-velocity state. But this is a condition that must be satisfied.

If, on the other hand, the rest length of a system changes on acceleration, the dynamical
interpretation of length contraction may fail, and this has given rise to a number of paradoxes,
most notably Bell’s spaceship paradox and Ehrenfest’s paradox.

Bell popularized a scenario invented by Dewan and Beran [3], in which two spaceships accel-
erate at exactly the same instantaneous acceleration in some stationary frame, with a taut
rope connecting them (along the direction of motion). The distance of the spaceships must
remain constant, as they have the same velocity at any time. So the length of the rope must
also remain constant, even though it “should length contract” (dynamically, that is). In fact,
the rope is length contracted at any point of its journey while it is moving and still intact.
Its – constant – length is smaller by the appropriate factor 1/γ of any momentarily comoving
inertial frame, in which it is (approximately) at rest, meaning that its length in that frame is
larger by ≈ γ(v) than the constant length between the two spaceships in the stationary frame.
Since the velocity v increases during acceleration that means that the rope becomes more and
more stretched.4 The ensuing tensile forces will eventually make it break.

Ehrenfest’s paradox exhibits an even more dramatic failure of the dynamic interpretation of
length contraction. A circular disk of radius R has a circumference 2πR. Now set it in rotation
about its center so that the circumference moves at speed v. According to Ehrenfest, each
length element of the circumference must then undergo length contraction (by a factor of

2He defines the length measurement of a moving object to be the measurement of a distance at a fixed time.
3Note the similarity with the basic Doppler effect, ascribing different frequencies to the same state of spatio-
temporal oscillation, i.e. wave, in two different frames. It is not a change of frequency between two states of
the wave in the same frame.

4This is consistent with the fact that in order to keep the proper length of an accelerating object constant, its
front end must be accelerated more slowly than its back end. For our rope, both ends are equally accelerated,
so its proper length must increase (by elasto-plastic deformation), until rupture occurs.
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1/γ(v)), so the circumference becomes smaller than 2πR. But a rotating disk is still circular
and the Euclidean geometry of the inertial system in which the disk rotates5 simply requires
that the circumference is 2πR. This is a contradiction: the circumference cannot both be
smaller than 2πR and equal to 2πR.

Ehrenfest’s paradox disappears, as soon as we realize the kinematic nature of length contrac-
tion. The rotating circumference is length contracted in the (inertial) frame of the disk center,
but of course each length element is shorter than its proper length in a momentarily comoving
inertial frame – not than its length before the disk was set in rotation. If one can “stitch
together” all these momentarily comoving local inertial frames to form a non-inertial frame,
in which disk points are stationary, then the circumference of the disk in this frame must be
larger than 2πR by a factor of γ(v). Which means, of course, that the geometry for observers
sitting on the disk is non-Euclidean, as the radius of the disk remains R but its circumference
is 2πγ(v)R.

The reason dynamic length contraction does not work here is that setting the disk in rotation
uniformly, we have, for each length element of the circumference, a Bell’s spaceship scenario.
The two ends of the length elements are accelerated the same way, so the piece of material
between them will get stretched the same way as the rope in the spaceship case. There will
then be tensile stresses in the circumference of the rotating disk (and achievable velocities will
be limited by the resistance of the disk material to stretching). As long as the disk supports
these stresses, length elements of its circumference will increase their proper length via elastic
or plastic deformation. Length contraction of course refers the length in the non-rotating
frame to this elasto-plastically extended length in the corotating frame, not to the length
before rotation. You can find a detailed discussion of both paradoxes in my paper [4].

The upshot of this little detour is that kinematic phenomena such as length contraction may
be used to make predictions for dynamical effects (such as the length change on a change of
velocity), if proper care is taken (the rest length of the object must not change between the
initial and final dynamical states). While length contraction as defined by Einstein is not a
dynamical process itself, it may become useful in the description of dynamical processes.

I think the same is true for the Doppler effect and will try to show this in the following.
The example of length contraction may then be a useful reminder of how things work, when
kinematical constraints are used to obtain dynamical results.

Reflection from a moving mirror

With the Doppler radar method (by which the police likes to catch drivers for speeding), a
radar signal is sent towards a moving object (e.g., a car) and it is (partially) reflected and
received by the emitter again. From the frequency shift of the returned signal, the velocity
of the object is determined (and a ticket is issued if it exceeds the prescribed limit). Because
there is a Doppler shift of the frequency of the signal in the frame of the receiver and a second
one after reflection, now in the frame of the emitter, who is the second receiver, some authors
call this double Doppler effect [1], and I will, too. For the sake of simplicity, I will consider
only the case here (as I have done in my previous derivation of the one-way Doppler effect),
where the velocity of the moving object and the signal are aligned (i.e., parallel or antiparallel).
However, I will be more general than usual in not assuming a priori that the mass of the object
is so large that its recoil under interaction with the radiation can be neglected. That is, my
calculation covers the particular case of backscattering with the Compton effect as well (i.e.,

5Its mass is assumed not to be large enough to curve spacetime significantly.
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the reflecting object could be as light as an electron). Later, I will make an argument using
optical frequencies, which would correspond to lidar rather than radar. With electromagnetic
waves in the visual range, we may imagine the reflector to simply be a mirror.

The problem can be treated at the single-photon level and this yields the full result already,
if the reflector is massive enough so it does not change its velocity due to the interaction with
small numbers of photons, because then the interaction between the reflector and the photons
is unchanged from one photon to the next and the frequency change factor is the same for all
photons. For a reflector having very small mass, its motion changes significantly by recoil, and
subsequently arriving photons will suffer different frequency shifts.

My first approach focuses on a description of the process entirely in the frame of reference of
the emitter. Fig. 1 visualizes the situation, which is essentially described as an elastic collision.
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Fig. 1: Before the photon hits the mirror, it propagates to the right with energy
hν and momentum hν/c, while the mirror has the total momentum −p1 and energy
E1 =

√

M2c4 + p21c
2, where M is the mass of the mirror; depicted is the situation,

where the mirror moves to the left (so the sign of the momentum is negative). After
collision, the photon moves to the left, with energy hν̃, its momentum then is −hν̃/c.
The mirror retains the momentum −p2 and the energy E2 =

√

M2c4 + p22c
2.

Energy and momentum conservation for the collision provide the following two equations:

hν +
√

M2c4 + p21c
2 = hν̃ +

√

M2c4 + p22c
2 , (1)

hν

c
− p1 = −hν̃

c
− p2 , (2)

and it is useful to note that the velocity of the mirror can be directly calculated from its energy
and momentum:6

vi =
pic

2

Ei
i = 1, 2 (3)

We rearrange (2) and (1) a bit:

h(ν + ν̃)

c
= p1 − p2 , (4)

h(ν − ν̃)

c
=
√

M2c2 + p22 −
√

M2c2 + p21 =
p22 − p21

√

M2c2 + p22 +
√

M2c2 + p21

6We have pi = Mγ(vi)vi = M
(

1− (v2i /c
2)
)

−1/2
vi ⇒ p2i

(

1− (v2i /c
2)
)

= M2v2i ⇒ p2i =
(

M2 + p2i /c
2
)

v2i ⇒

v2i = p2i c
2/(M2c2 + p2i ) = p2i c

4/E2

i

4



= − p21 − p22
E1/c+ E2/c

. (5)

Taking the ratio of (5) and (4), we finally get

1− ν̃/ν

1 + ν̃/ν
= − p1 + p2

(E1 + E2)/c
= −p1c

2 + p2c
2

c(E1 + E2)
= −1

c

(

E1

E1 + E2

p1c
2

E1
+

E2

E1 + E2

p2c
2

E2

)

= −1

c

(

E1

E1 + E2
v1 +

E2

E1 + E2
v2

)

≡ −v

c
, (6)

where we have used (3) to introduce the velocities of the mirror before and after reflection.
The final equality defines a weighted average of these velocities

v = αv1 + (1− α)v2, α ≡ E1

E1 + E2
, (7)

with the weight factors given by the ratios between the energies of the mirror before/after
reflection and the sum of these energies. The physical significance of this weighting will be
discussed later. The difference between E1 and E2 is smaller than the energy of the infalling
photon, so in practice it will be negligible for macroscopic mirrors. We then have α = 1/2 and
v1 = v2 = v. When we are dealing with gamma rays and the “mirror” is an object of atomic
size, there may be observable differences between the three velocities. In any case, Eq. (6) is
an exact result. We may solve it for ν̃/ν and obtain

ν̃

ν
=

1 + v/c

1− v/c
(8)

which is the familiar formula for the Doppler radar frequency shift. It involves no approxi-
mation,7 whether the recoil effect on the mirror is negligible or not. In case it is appreciable,
we just have to take an appropriate average of the – then different – mirror velocities before
and after reflection to keep the formula unchanged (and to avoid having two velocities appear
explicitly in it). Of course, it also means that the measurement of ν̃ for given ν does not yield
the precise velocity of the object, which changes during the interaction anyway, it gives us
an average of the velocities before and after interaction. If the complete initial state of the
system is known, i.e., if we know ν, p1 and E1 (or the mass M , from which we can calculate
E1 knowing p1), then the complete final state, given by ν̃, p2 and E2, is calculable. This is not
the main interest of this article, so I will not present the calculation here.8 Note also that the
same result holds for a bunch of n coherent photons moving together, all that changes is that
h in the calculation is replaced by nh everywhere, and this factor cancels out in the frequency
formula.

Have we derived the Doppler effect in obtaining Eq. (8)? Well, let’s have a look at its definition
in Wikipedia: The Doppler effect (also Doppler shift) is the change in the frequency of a wave
in relation to an observer who is moving relative to the source of the wave.9 Since the only

7Within the general theoretical framework, in which we are working. It is a result for flat spacetime, i.e., we are
assuming that there are no gravitational fields around that would cause spacetime curvature.

8One way to proceed is to divide Eq. (1) by c and add the result to Eq. (2) to eliminate ν̃. Then isolate the
square root expression containing p2 on one side of the equation and take the square to obtain an equation that
is linear in p2, because the p22 terms cancel. This gives an expression determining p2 in terms of p1, M , and
ν, all known quantities from the initial state. Once p2 is known exactly, it is trivial to obtain E2 and then we
may use Eqs. (7) and (8) to obtain ν̃.

9A slightly more precise way of formulating this would be: The Doppler effect (also Doppler shift) is the change
in the frequency of a wave between the frames of reference of an observer and of the source of the wave, who
are in relative motion with respect to each other. This clarifies that by “frequency in relation to” is meant
“frequency in the frame of”, i.e., both observer and source measure the frequency to which the effect refers in
their rest frames, respectively. Neither adopts a description in terms of a frame that is moving w.r.t. themselves.
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frequency change that we derived via energy and momentum conservation is not a change in
relation to an observer moving relative to the source – the observer and the source are at rest
with respect to each other, being part of a single device or experimental arrangement, this
does not look much like a derivation of a Doppler effect. Moreover, our derivation was not
based on wave properties, it used a particle picture for the electromagnetic signal, which was
considered to be a photon. This is not a severe objection, however, because we are familiar
with the wave-particle duality from quantum mechanics and the de-Broglie relations.

Nevertheless, all we did was to deduce a frequency shift in a certain experiment. To relate it to
the Doppler effect and to show that it indeed is interpretable in terms of two successive Doppler
effects, it would be beneficial to have a derivation that makes use of a frame of reference of a
moving observer in addition to the single observer at rest appearing in our discussion so far.

We might be inclined to think that this is only possible, if the recoil is negligible, because
otherwise we will have two velocities of the mirror, the pre-collision velocity, defining a moving
observer frame of reference, and the after-collision velocity, defining a differently moving emit-
ter frame of reference. The whole process would then involve three frequency shifts, the first
between the sender of the Doppler radar signal and the mirror before arrival of the signal, the
second a frequency shift between the mirror frames before the signal absorption and after its
reemission (which might not be a Doppler shift) and the third the shift between the reemission
of the signal and its reception back at the original emitter.10 Fortunately, it is not necessary
to introduce three frames of reference. We will consider the reflection process, describable
as absorption and reemission, not in either of the two mirror frames but rather in a frame
moving at an average velocity, defined on the basis of a criterion maximizing the simplicity of
the description. As it will turn out, this velocity is given by Eq. (7) in the frame of reference
of the original sender of the Doppler radar signal.

The crucial idea is to take a frame, in which the absorption and reemission of the photon
happen at the same frequency (see Fig. 2).
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−p ’

−p

E ’

after:

before:

1

E ’
2
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h

’/c−h
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hν
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Fig. 2: Before the photon hits the mirror, it propagates to the right with energy hν ′

and momentum hν ′/c, while the mirror has the total momentum −p′1 and energy

E′

1 =
√

M2c4 + p′1
2c2; depicted is the situation, where the mirror moves to the left

(so the sign of the momentum is negative, that of p′1 positive). After collision, the
photon moves to the left, with the same energy as before hν ′, its momentum then is

−hν ′/c. The mirror momentum becomes −p′2 and its energy E′

2 =
√

M2c4 + p′2
2c2.

We use −p′2 for the momentum, although it will turn out that this momentum points
to the right, as is correctly indicated by the arrow. With this sign convention, p′2
will become negative.

10Note added on 16 September 2024: In fact, there are four frequency shifts, as will be demonstrated in an
addendum, two of them compensating each other.
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Energy and momentum conservation now read

hν ′ +

√

M2c4 + p′1
2c2 = hν ′ +

√

M2c4 + p′2
2c2 , (9)

hν ′

c
− p′1 = −hν ′

c
− p′2 , (10)

and the first equation obviously implies |p′1| = |p′2|, the second then becomes

2
hν ′

c
= p′1 − p′2 = 2p′1 , (11)

where ν ′ > 0 makes p′2 = −p′1 necessary (i.e., p′1 and p′2 cannot have the same sign). Hence,

p′1 =
hν ′

c
= −p′2 , (12)

and this is the entire result we get from energy and momentum conservation. The average
frame of reference therefore is chosen so that the sum of the momenta before and after reflection
becomes zero. (We could have taken that as the condition for the choice of the frame instead
of equality of the frequencies before and after reflection. Then that equality would have been
derived from energy and momentum conservation and the condition that “on average” the
mirror is at rest.)

In order to relate the frequency ν ′ to the emission and absorption frequencies ν and ν̃ in
the original emitter’s frame, energy and momentum conservation are of little use. How-
ever, since I derived the Doppler effect previously (in another essay, see https://wasd.urz.

uni-magdeburg.de/kassner/research_gate_pres/sci_edu_res_gate/derivation_doppler.

html), I simply can take over the results. All that is needed is to calculate the velocity of the
emitter frame in the reflector frame. This is not difficult, using the transformation formulas
for energy and momentum between the two frames. Let us call the sought-for velocity u. The
Lorentz transformations between the two frames then read

ct = γ
(

ct′ − u

c
x′
)

, γ =

(

1− u2

c2

)−1/2

x = γ
(

x′ − u

c
ct′
)

, (13)

and the energy-momentum four vector (of which we consider only two components) must
transform the same way:

E

c
= γ

(

E′

c
− u

c
p′
)

,

p = γ

(

p′ − u

c

E′

c

)

. (14)

We simply write this out for the two momenta and energies p = −p1, E = E1 and p = −p2,
E = E2:

−p1 = γ
(

−p′1 −
u

c2
E′

1

)

= γ

(

−hν ′

c
− u

c2

√

M2c4 + h2ν ′2
)

, (15)

−p2 = γ
(

−p′2 −
u

c2
E′

2

)

= γ

(

hν ′

c
− u

c2

√

M2c4 + h2ν ′2
)

, (16)

⇒ p1 + p2 =
2γu

c2

√

M2c4 + h2ν ′2 , (17)
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E1

c
= γ

(
√

M2c2 +
h2ν ′2

c2
+

u

c2
hν ′

)

, (18)

E2

c
= γ

(
√

M2c2 +
h2ν ′2

c2
− u

c2
hν ′

)

, (19)

⇒ E1 + E2

c
= 2γ

√

M2c2 +
h2ν ′2

c2
(20)

Taking now the ratio of (17) and (20), we get the second expression from Eq. (6):

p1 + p2
(E1 + E2)/c

=
u

c2

√
M2c4 + h2ν ′2

√

M2c2 + h2ν ′2/c2
=

u

c

!
=

v

c
, (21)

demonstrating that the velocity u of the emitter defined here is precisely the negative of the
velocity −v of the average mirror frame defined in Eq. (7). That is, we may now justify the
weight coefficients of this average by pointing out that it is exactly with this weighting by
energies that the average mirror frame will be the rest frame of an observer for whom the
photon is reflected without energy exchange (and where its momentum will just be reversed).

Hence, the emitter moves at velocity v in the average mirror frame, which serves as receiver
for the incoming photon and as emitter for the reflected one. Applying the standard Doppler
effect formula, we find then for the frequency ν, by which the photon was originally emitted:

ν ′

ν
=

√

1 + v/c

1− v/c
⇒ ν =

√

1− v/c

1 + v/c
ν ′ . (22)

Next, the original emitter becomes a receiver for the reflected photon, so the ratio between
the final observed frequency ν̃ and the frequency of the reflected photon is:

ν̃

ν ′
=

√

1 + v/c

1− v/c
. (23)

Therefore, the total frequency shift is described by

ν̃

ν
=

1 + v/c

1− v/c
(24)

which agrees with (8) but is now a result obtained using the Doppler shift between frames
twice, thus justifying the name double Doppler effect.

It should however be kept in mind that by double Doppler effect we mean a dynamical process
consisting of three subprocesses: emission of the electromagnetic wave and its propagation
to the moving object, reflection (which is the process that here has been discussed in terms
of energy-momentum conservation), and propagation back and reception of the wave. In the
frame of the original emitter, the frequency shift happens during the reflection step, in the
average frame associated with the reflector, no frequency shift happens at all. The reflector
ascribes the fact that the original emitter notices a frequency shift to two ordinary Doppler
shifts. These do not “happen” at the moments of initial emission or final reception. The
frequency of the incoming photon is always different for the emitter than for the observer in
the average reflector frame, and the frequency of the reflected photon is also different along
all of its path for the two frames. This of course makes it impossible to interpret the Doppler
shifts as being due to energy conservation. The process to which energy conservation was
applied in both derivations, is the reflection process, but it leads to a frequency shift only in
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the first derivation (in the second, the frequency of the photon is unchanged on reflection),
and that frequency shift is different from that of the Doppler effect.11

I would like to support, as I have done in my first essay on the Doppler effect, the argument
against it being a consequence of energy conservation by a thought experiment, embellishing
our Doppler radar setup. First, I would like to make it Doppler lidar instead of radar, i.e., I
would like to work at optical frequencies. That is because at optical frequencies there exist
color filters. Assume we have a set of color filters transparent to the frequency ν ′ but blocking
the frequencies ν and ν̃ (i.e., the filters will not absorb photons of the first frequency but
absorb those of the two other frequencies).

(−v)

emitter mirror

(−v) (−v)

’hν

−p’

E’

Fig. 3: Same setup as in Figs. 1 and 2, but with color filters added. These move
at velocity −v in the emitter frame (that is they are at rest in the average mirror
frame, the mirror has momentum −hν ′/c in that frame before and momentum hν ′/c
after reflection) and are transparent to frequency ν ′ but block frequencies ν and ν̃.

Will the photon get through to the reflector and back to the emitter? Given the description in
the average reflector frame, we can answer that question in the affirmative. In that frame, all
the filters are at rest and the photon has the right frequency (ν ′) to pass in both directions.
Note also that the observer in the average mirror frame can deduce from the fact that the
photon successfully is sent to him and returns that it has the frequency ν ′ during all passages
through a filter.

How is the emitter to explain that the photon passes all filters? After all, if the photon
successfully gets emitted and returns according to the mirror observer, it cannot be blocked
in his reckoning.12 But the photon has a wrong frequency on both segments of its path, its
frequency is too low (ν) on the way towards and too high (ν̃) on the way back from the
reflector. Well, that is true in the frame of the emitter...

But the emitter realizes that the filter “sees” the photon at at different frequency on the way
to the mirror, because there is a Doppler effect, due to the motion of the filter at velocity −v
(which is towards the emitter). This Doppler effect will increase the frequency by a factor
(1 + v/c)1/2/(1− v/c)1/2, from ν to ν ′, which means it will just pass. It should be noted that
this Doppler effect is not connected with any absorption or reflection, so it cannot be explained
by an energy transfer to the photon. Indeed, the presence of this Doppler effect is inferred
from the photon not being absorbed/blocked, i.e., from the fact that the filter is transparent
to it, and it goes through without significantly interacting with the filter.

On the way back, the frequency of the photon is ν̃ according to the emitter observer, and
that is the case immediately after reflection. But now it approaches the filters from “behind”,
i.e., it catches up with them, so the Doppler effect reduces its frequency in the filter frame,
by a factor (1 − v/c)1/2/(1 + v/c)1/2, and if you multiply ν̃ by that, you again obtain ν ′.
This second Doppler effect also cannot be explained by some energy exchange with the filter,

11By which I mean the ordinary or basic Doppler effect, involving exactly one change of frames of reference.
12Emission of a signal and reception of a return signal are objective events. If they happen in one frame, they
must happen in any frame.

9



because again there is no significant interaction between the photon and the filter, otherwise
the photon would be absorbed. Note also that while the frequency is ν ′ for the filter, it remains
ν̃ for the emitter. There is no frequency shift in the emitter frame on either the way towards
or the way back from the reflector, all of the frequency shift (from ν to ν̃) happens during the
reflection event.

I think this makes it pretty clear that the Doppler effect is kinematic and simply describes the
frame dependence of the frequency of a wave; it is a phenomenon, not a process. The double
Doppler effect, on the other hand, is a (sequence of) process(es), in which the kinematics
of the Doppler effect plays a role, if a description using several frames of reference is used.
The distinction between the two effects is similar to that between length contraction and
dynamic length contraction, except that the latter seems more closely related to the kinematic
phenomenon, because it is described by the same formula.13 This is not the case with the
double Doppler effect, which is quantitatively different from the Doppler effect. But still the
dynamical phenomenon can be described quantitatively with the help of the kinematical one.

Double Doppler effect and the equivalence of inertial frames

Finally, I would like to comment on Quattrini’s attempt at a sweeping attack on the relativity
principle, where he uses a thought experiment involving an iterated double Doppler effect. His
paper is deposited on a web page hosted by Research Gate:
https://www.researchgate.net/publication/382239104_CONSERVATION_LAWS_-LIMITS_OF_

THE_EQUIVALENCE_OF_INERTIAL_FRAMES

Since he may change the paper in the future, I put a copy of the version that I am referring
to (dated 13.07.2024) on the same web page as this article, where you can click on it.

He considers the radar Doppler experiment with a mirror moving towards the emitter of the
waves and allows for repeated reflection, i.e., the emitter becomes a reflector after having fed
the electromagnetic field into the system. The frequency of each photon increases by the double
Doppler factor on each reflection at the moving mirror.14 From this Quattrini concludes that in
the course of time the energy density of the electromagnetic field will increase, which is correct
under the idealizing assumptions of the thought experiment.15 But then he concludes, and this
is an erratic conclusion, that energy seems to be created out of nothing, a perpetuum mobile
would arise, and energy conservation be violated, unless the formula for the double Doppler
effect were modified. There are even weirder conclusions. I will discuss them afterwards.

The reason why a conclusion about the experiment being “at variance with conservation laws”
is rash, to say the least, is that he considers only the energy of a component of the system, viz.

13If we include elastic and plastic deformations in the definition of the dynamic length contraction, then it will
be described by a general formula that is different from that for the kinematic effect (and it may even become
length expansion). An example is Gron’s generalization of Hooke’s law [5].

14There is no frequency increase in the (average) frame of the emitter for reflections by the emitter, so the double
Doppler factor applies once for each bounce from the mirror. In the average frame of the mirror, the double
Doppler factor applies for each bounce from the emitter, whereas there is no frequency change on reflection
from the mirror.

15One such assumption is that the number of photons is constant. However, the quantum mechanical state of
the electromagnetic field, if it starts out at radar frequencies need not even have a fixed photon number. In
quantum field theory, a coherent field is described by a state for which the photon number is undefined. But
even if the initial state has a fixed photon number, that number changes easily, for thermodynamic reasons –
the chemical potential of a photon is zero, which means it can be freely created or destroyed to accommodate
temperature changes. In a real arrangement, many thermal photons will be created as the field energy increases
and those will be absorbed by the emitter and reflector material and carry energy away. Still, we may assume
a number of idealizations in a thought experiment that in practice cannot be realized.
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the electromagnetic field. But that energy can easily change, if there is energy exchange with
other parts of the system. Energy conservation holds for a closed system, hence it may hold
for the whole apparatus, if that is well isolated with respect to the environment, but of course
the electromagnetic field can exchange energy with the mirror or the emitter and if the energy
of the field increases, then the (kinetic) energy of the mirror and/or the emitter decreases in
a way to keep the total energy constant.

It is easy to give a qualitative discussion of how the idealized system would behave in the course
of time. First, to make it closed, we would have to avoid fixing the emitter position in the
external world. Let us assume that both the emitter and the mirror can slide frictionless. An
inertial system, in which the whole process could be described for an indefinite time, would
be given by the center-of-energy system. In this system, both the emitter and mirror will
initially move towards the center of energy, thus compressing the electromagnetic field between
them. Each bounce of a photon on either the emitter or mirror will impart momentum on
them, pushing them outward. This will slow down the motion of the piece hit by the photon,
decreasing its kinetic energy and increasing the frequency of the photon. The radiation pressure
will increase, decelerating both the emitter and the mirror further. This continues for a while
until their relative velocity is zero.16 Then they will be accelerated outward. From that
point on, the energy density of the radiation field between the two reflectors will decrease,
as the double Doppler effect for receding objects leads to a frequency reduction rather than
an increase. This decreases the radiation pressure, diminishing the outward acceleration.
Asymptotically, the system will approach a state in which the radiation field has frequency
zero (i.e., it will tend to disappear) and the emitter and mirror will move apart at constant
finite velocities, with kinetic energies that add up to the sum of the initial kinetic energies of
both objects (in the center-of-energy frame) plus the energy of the initial radiation field (in
the same frame). The time to reach that asymptotic state will be infinite, because at any finite
time, the energy density of the radiation field will still be positive.17

To summarize, what Quattrini says about energy conservation in the system is largely incor-
rect. In the course of his exposition, he also asserts that the result for the double Doppler effect
(which I derived here) is only an approximation, due to the velocity change of the mirror, as
long as the latter does not have infinite mass, which in reality never is the case. My derivation
shows clearly that this is wrong, at least for any single pair of bounces of the photon between
the emitter and the mirror. The result (8) is exact, whether the mirror has a finite mass or an
infinite mass. It is only the identification of v with the mirror velocity that requires a large
mirror mass. Without that identification, the formula remains exact, with an appropriate
average of the two mirror velocities before and after interaction with the photon determining
the frequency shift. Clearly, the change of velocity between different bounces of photons may
lead to the necessity of using the formula with different velocities. That means, the Doppler
factor varies with time in Quattrini’s thought experiment. But it does not mean that the
fundamental formula is inexact.

In practice, the recoil of mirrors does not produce any significant effect in experiments with
radar or optical frequencies. However, when gamma rays are used and the “mirror” is a

16Calculations for the velocity change on each bounce could proceed in a very similar way to the calculations
done here in the emitter frame. The center of energy could be considered the emitter for both bounces on
the mirror and the original emitter, and energy-momentum conservation be applied for bounces on either side.
The average mirror or average emitter frame moving at a velocity between the velocities before and after the
reflection events, could be taken as momentary inertial frame, if desired. That is however not even necessary,
as the entire description may proceed in a single frame, if we use the first approach discussed above for the
calculation of the energy shift.

17This presupposes that the reflectivity of the emitter and the mirror remains one at all frequencies, i.e., there
are never absorption losses. An idealized experiment...
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single atom, then recoil becomes important.18 Because the atoms have a thermal velocity
distribution, the Doppler shift does not have a fixed frequency but a frequency distribution,
i.e., a finite linewidth. Recoil effects can increase the observed limewidth well above the
natural one. Gamma ray transitions between energy levels of heavy atoms may have a very
small natural linewidth, in principle allowing for spectroscopy experiments with high accuracy.
But that accuracy could not be reached for a long time in real life, because the emission and
absorption are accompanied by a large recoil of the atom. Then came Mößbauer. He found out
that if you do gamma ray emission and absorption at low temperature with solids, then you may
achieve recoilless transitions. At sufficiently low temperatures, the likelihood of momentum
transfer to phonons decreases (because their number becomes small). So the probability for a
gamma transition without phonons becomes nonzero (and attains a useful magnitude) and in
that case the recoil is to the whole crystal lattice rather than to a single excitation (phonon).
Because the mass of the crystal is large, recoil becomes negligible, leading to relative precisions
of 10−15 and better for gamma ray frequency measurement (using the Doppler shift to achieve
resonance between two gamma ray transitions). By virtue of the Mößbauer effect, it became
possible for Pound and Rebka in 1959 to measure the gravitational redshift due to a height
difference of about 20 m in the gravitational field of the earth.19

Returning to Quattrini’s paper, there are even worse claims, as the title of the paper suggests.
Indeed, somehow Quattrini seems to believe that the fact that the mirror will not move at
constant velocity implies that the equivalence of inertial frames (i.e., the relativity principle)
gets lost.20 But why on earth should the fact that a frame of reference fixed to the mirror
will not remain inertial – because the mirror performs an accelerated motion – allow one to
draw any conclusions about properties of inertial frames? That idea is a category mistake. A
frame of reference is not something that has to be attached to an object. When we wish to
describe the gravitational two-body problem for a planet and its moon, then we do not attach

18An atom is not planar, so one-dimensional considerations as those made here, are not sufficient. Non-coaligned
directions of momenta also play a role in momentum transfer.

19To detect the redshifted frequency which no longer was in resonance with the – nominally equal – gamma ray
frequency of the detector, the detector was moved, so the Doppler effect could be used to tune the frequencies
to become equal. The velocity necessary for this tuning then gave the frequency shift.

20Note added on 16 September 2024: Quattrini pointed out to me that this was not what he said. For him,
inertial systems are equivalent by definition; what he claims is that this equivalence is inapplicable in his
thought experiment. This is a somewhat strange level of differentiation from someone who normally is not
as accurate in his wording. Regarding “invalidation for application”, to be distinguished from “validity by
definition”, the first thing to be pointed out is that the principle we are talking about is the relativity principle
(the notion “equivalence principle” is usually reserved for another concept that Einstein used in his work on
general relativity) which is a physical principle that has been tested experimentally millions of times. You
cannot test a definition experimentally. (That is why it is, for example, nonsense to consider Newton’s second
axiom a definition of force.) So the equivalence of inertial frames, i.e., the relativity principle, is not a definition,
it is a statement about physics. Second, inertial systems are immaterial mental constructions. They can be
“realized” approximately and only in finite regions of space, by use of clocks and distance measuring devices,
but their existence as analytical tools does not depend on such a realization any more as the existence of, say,
the number π relies on the existence of ideal circles in the real world. If inertial systems can be defined that
means they are applicable, because their definition implies that they may serve as frame of reference, that is
they can be used to be referred to. In flat spacetime, they can always be defined to be extended through all
of it. In curved spacetime, their existence is necessarily restricted to a local part of the spacetime, so if you
wish to work with inertial frames globally, you have to consider a whole set of them, not just a single frame.
Fortunately, we know how to work with non-inertial frames which often can be used globally. Now, in the
experiment at hand, we could define (and hence use or apply) an inertial system that is attached to the mirror
before it is hit by a photon, i.e. it would be the rest system of the mirror. Once the mirror is hit by a photon,
it will be accelerated for a short time, i.e. become non-inertial during that interval. But that does not mean
that our once-defined inertial system does not exist anymore or becomes inapplicable. All that happens is that
the inertial system continues to move at the pre-collision velocity of the mirror while the mirror changes its
velocity. So the inertial system, which still can be used for description is no longer identical with the rest system
of the mirror, rather the mirror moves in it. Or, to put it bluntly: inertial systems, being immaterial, do not
experience recoil!
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the frame of reference to either body. Rather we take as origin of our frame the center of mass,
which may lie outside of both bodies. In my discussion of the double Doppler effect, I explicitly
avoided to attach a frame of reference to the mirror, because that would render the description
of recoil effects more difficult. But even if a frame of reference is fixed (for a sufficiently short
time interval) to an object that does not move inertially, it can be a momentary inertial
frame of reference. Quattrini doubts the equivalence of inertial frames, because in his thought
experiment the mirror frame turns non-inertial.21 However, there is no logical path from the
fact that a frame fixed to a body may become non-inertial, to the conclusion that different
inertial frames are not equivalent (in the sense of the relativity principle). Otherwise, the mere
fact that there are bodies moving in an accelerated fashion, i.e. non-inertially, would lead to
said non-equivalence, an idea that nobody so far has advanced. Again, by what logic does the
existence of non-inertial motion affect the properties of inertial frames?

Another unfounded claim by Quattrini is that recoil is the “real reason” of the Doppler effect.
In fact, the most precise measurements (in terms of relative precision) are those where recoil
is avoided via quantum mechanics as in the Mößbauer effect.

In the conclusions of Quattrini’s paper, he gives a summary, where essentially nothing except
the first sentence (which is uncontroversial but clumsily formulated) is correct. In particular,
his statement “considering a very superficial analysis, Doppler effect might look like an observer
dependent problem” is off the mark. A superficial analysis of the double Doppler effect might
lead to the conclusion that the Doppler effect has nothing to do with frame dependence (e.g., if
you consider only the first derivation I gave). A thorough analysis, however, shows that frame
dependence is the essence of the Doppler effect and that the superficiality missing this arises
through consideration of a composite phenomenon only (the double Doppler effect), instead of
carrying the analysis further to study the elementary phenomenon (which I have done before).
I recommend to Quattrini to study the arrangement of Fig. 3 carefully, in which the Doppler
effect arises at each of the color filters, without any net absorption or recoil taking place.

Addendum of 17 September 2024

Apparently, the main message of the preceding text has been largely missed, at least by
Quattrini. It is that the frequency shift observed by the emitter is interpretable as (double)
Doppler effect within a description employing at least two frames of reference, but that in the
one-frame description presented first, it is no Doppler effect at all. Rather, it is entirely due
to the photon-mirror collision. This oversight may be due to the fact that the two frames
I have exclusively looked at are both very special, leading to a 100% separation of effects,
so to speak, in the two descriptions. In the first, we have no Doppler effect, in the second,
the whole frequency shift is only Doppler effects, whereas the collision does not induce any
frequency shift. Therefore, I would like to give here the description of the effect in a general
inertial frame, which will demonstrate that the “double Doppler shift” generally is due partly
to the (primitive) Doppler effect (arising twice) and partly to a frequency shift due to the
collision. So there is no question of energy and momentum conservation being responsible for
the Doppler part of the effect. It is only responsible for the collision part of the shift. These
are two separate things.

Another reason for writing this addendum is that Quattrini has produced an alternative for-
mula for the double Doppler shift, containing an energy (though not the recoil energy) and
allegedly proving that my formula is only an approximation. Of course, this is not the way to
prove a formula to not be exact. You have to show, where an approximation is made in the

21So does the emitter frame, as I have discussed above.
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formula under discussion, not to give a different formula that may just express the same thing
in terms of different quantities. I set out to check Quattrini’s alternative formula, expecting
it to be correct but equivalent to mine. In an earlier one of his derivations, I found an error
that made continuation of the calculation pointless. In the third version of his paper (sporting
a slightly changed title) that I have also linked on my web pages (so it can be looked up by
readers in case it is not the last one), he gives a derivation that contains three errors and one
approximation. The first two errors compensate each other, thus resulting in a correct (and
interesting) formula for the double Doppler effect (that I will show to involve three inertial
reference frames). It turns out to be mathematically equivalent to my formula, which I will
also demonstrate. The third error in Quattrini’s calculation is also compensated, but by his
approximation, so his end result involving the energy of the mirror is in fact exact – and also
equivalent to my formula. A bit of irony comes from the observation that originally Quattrini
claimed this formula to be exact and mine an approximation, whereas in the paper version
three, he considers his formula to be an approximation while still not having demonstrated
that mine is not exact, so presumably the exact formula is mine and the approximation is
his. In reality, they are both exact. They simply express the same relationship via different
variables. Here, I will derive the two formulas avoiding the errors of Quattrini’s calculation.

The Doppler radar experiment as described in an arbitrary inertial frame

Let νo be the frequency of our photon, which was originally emitted at frequency ν by the
emitter E, in the frame of some observer O who is moving at velocity w to the right (see
Fig. 4)22 and call the frequency of the returning photon in O’s frame ν̃o.

e
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ν~ν ’

ν’
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e
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Fig. 4: An observer O moving at velocity w to the right would measure the incoming
photon at frequency νo, the returning photon at frequency ν̃o. The collision is
described in O’s frame. Of course, the photon should not actually be absorbed
by O (it could be measured in different experiments with the same setup – or its
frequencies could simply be inferred from those measured by E).

Obviously, we can relate νo to ν and ν̃o to ν̃ by the standard Doppler effect formula:

νo =

√

1− w/c

1 + w/c
ν , ν̃ =

√

1− w/c

1 + w/c
ν̃o . (25)

Next, we write down energy and momentum conservation for the collision in this frame:

hνo +

√

M2c4 + p
(o)
1

2
c2 = hν̃o +

√

M2c4 + p
(o)
2

2
c2 , (26)

22It is not necessary that there really be an observer. All we require is the existence of an inertial frame moving
at velocity wex with respect to the emitter frame. Its existence is guaranteed (via the relativity principle) by
the existence of an inertial frame in which the emitter is at rest. The case of an emitter that changes velocity
as well, due to recoil, will be briefly addressed later.
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hνo
c

− p
(o)
1 = −hν̃o

c
− p

(o)
2 , (27)

where the notation should be obvious: the momenta, in O′s frame, of the mirror before and
after collision are characterized by a superscript (o). We then express, in the same way as
with equations (4) and (5), the sum h(νo+ ν̃o) via the second, the difference h(νo− ν̃o) via the
first equation and take the ratio to obtain
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=
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)

c

E
(o)
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(o)
2

≡ −v(o)

c
, (28)

where the last equation defines the velocity of the average reflector frame in O’s inertial frame.
Solving for ν̃o/νo, we arrive at

ν̃o
νo

=
1 + v(o)/c

1− v(o)/c
, (29)

a formula that has the same algebraic structure as Eq. (8), as it should. Combining this with
Eqs. (25), we obtain a result for the frequency shift observed by the emitter:

ν̃

ν
=

√

1− w/c

1 + w/c
ν̃o

√

1− w/c

1 + w/c
ν−1
o =

1− w/c

1 + w/c

ν̃o
νo

,

ν̃

ν
=

(1− w/c)
(

1 + v(o)/c
)

(1 + w/c)
(

1− v(o)/c
) (30)

Naturally, the question immediately arises, whether this is the same as (8) – which must of
course be so, if everything is consistent. Let us check. −v(o) is the velocity of the average
reflector frame in the inertial system of O, −v is its velocity in the inertial frame of E, and
w is the velocity of O in the frame of E. But these three velocities must satisfy the velocity
addition theorem of special relativity, i.e., we must have

−v =
w − v(o)

1− wv(o)/c2
, (31)

which allows us to express v(o) in terms of w and v:

− v + vwv(o)/c2 = w − v(o) ⇒ v(o)
(

1 + wv/c2
)

= w + v ⇒

v(o) =
w + v

1 + wv/c2
. (32)

Plugging this into Eq. (30), we find

ν̃

ν
=

(1− w/c)
(

1 + (w + v)/(1 + wv/c2)/c
)

(1 + w/c) (1− (w + v)/(1 + wv/c2)/c)
=

1− w/c

1 + w/c

1 + wv/c2 + w/c+ v/c

1 + wv/c2 − w/c− v/c

=
1− w/c

1 + w/c

(1 + w/c)(1 + v/c)

(1− w/c)(1− v/c)
=

1 + v/c

1− v/c
, q.e.d. (33)

So the frequency shift observed by the emitter is independent of the velocity of the auxiliary
observer frame (O), as it must, because our observer was not supposed to interfere in any way
with the photon.
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The discussion of the experiment from the point of view of an arbitrarily moving inertial frame
of reference O makes the nature of the experiment very transparent. As we can see clearly
now, the double Doppler frequency shift consists of three contributions in general:

1. a Doppler shift of the photon frequency between the emitter frame and the frame O
(ν → νo)

2. a frequency shift due to energy and momentum conservation during the collision process
of the photon with the mirror (νo → ν̃o)

3. a Doppler shift of the returning photon’s frequency between the frame O and the emitter
frame (ν̃o → νo)

Thus, the double Doppler shift is by no means a pure Doppler effect, it is a combination of
a collision-induced frequency shift with two Doppler shifts. The Doppler shifts do not follow
from energy conservation, whereas the collision-induced shift does. The distribution of the
full frequency shift between the two Doppler shifts and the collision-induced shift is frame
dependent. The frequency ratio observed by the emitter is of course an objective quantity and
frame independent.

Naturally, the two cases discussed before also fall under this general scheme, because what
should prevent us from choosing, as our arbitrary inertial frame, either the emitter or the
average reflector frame? Let us do so.

If the frame O is taken identical to E, we obviously have w = 0. This means that the two
Doppler effects correspond to frequency shifts between non-moving frames, i.e. they are absent:
νo = ν, ν̃o = ν̃. The collision-induced frequency change is given by ν̃/ν = (1+ v/c)/(1− v/c),
i.e., it corresponds to the full frequency shift seen by the emitter. Hence, the “double Doppler
effect” does not include any Doppler shift in this case!

If the frame O is taken identical to R, the average reflector frame (as I have defined it), we
have w = −v and v(o) = 0. This means that there is no frequency change in the frame O, the
collision does not modify the frequency of the photon (ν̃ ′ = ν ′, but we never introduced ν̃ ′).
The total frequency change at the emitter is given by the concatenation of two Doppler shifts,
each contributing a factor

√

(1 + v/c)/(1− v/c). So from the point of view of the average
reflector frame, the double Doppler effect consists of two Doppler frequency shifts and nothing
else. The energy balance during the collision does not contribute to the frequency shift.

Obviously, this is a much more differentiated view than the simplistic and categoric claim by
Quattrini that the Doppler effect is physically due to energy conservation during an absorption
process. He never showed this for the basic (“one-way”) Doppler effect, which would be
mandatory to support his claim. Instead, he discussed the complicated case of the double
Doppler effect, where part of the frequency change may not even be due to a Doppler effect. But
this escaped his attention, because he believed that this part constitutes the effect. However,
as my discussion clarifies, it is just the remaining part (the two transitions between the frame
in which the collision is described and the emitter frame) that is due to the Doppler effect.
What he considers is the non-Doppler part of the frequency shift. (Which in the emitter frame
is the whole shift, because if only one inertial frame is involved, there is no Doppler effect.)

Ironically, Quattrini pointed out a paper to me [6], in which the Doppler effect is derived for an
atom emitting a photon and where the recoil energy appears in one form of the Doppler formula.
Taking the mass of the atom to infinity seems to recover the standard form. However, the
author demonstrates that this formula reduces to the standard form without approximation,
via a correct identification of the photon frequency, and states: “One should be aware that
the Doppler formula essentially gives the connection between energies of a single photon in
two inertial frames. The mass of the source of radiation has nothing to do with the Doppler
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formula.” This is quite the opposite of what Quattrini claims – he believes that the mass of
the mirror (the source of radiation for the returning photon) must play an important role in
an accurate description of the effect and that the infinite-mass case does not make any sense
in a discussion of its cause. But the author of the paper he cited for me in order to support
his point of view simply dismisses the claim as incorrect...

Two additional special frames

I would now like to discuss part of the description of the Doppler radar experiment in two
further special frames. This will lead to additional physical insight and reward us with another
neat formula for the double Doppler effect.

Before, let us rewrite our velocity result for the average reflector frame, defined in Eq. (28), in
terms of velocities rather than momenta and energies. We have

p
(o)
i = Mγ(v

(o)
i )v

(o)
i , i = 1, 2 where γ(v

(o)
i ) =

1
√

1− (v
(o)
i /c)2

, (34)

E
(o)
i = Mc2γ(v

(o)
i ) , (35)

and we will often abbreviate
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c
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i

(36)

and indicate the velocity argument by either an accent, a subscript, and/or a superscript, for

example β
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(o)
i /c, γ

(o)
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(o)
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i , etc. The notation should be

fairly easy to understand.

The rewriting yields:
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(37)

The first frame we will consider is the pre-collision inertial frame of the mirror. We have
assumed that before being hit by the photon the mirror moves at constant velocity −v1 in
the emitter frame. Now we define as our observer inertial frame the frame moving with the
mirror velocity (i.e., −v1) immediately before impact of the photon.23 And we will indicate
(most) quantities referring to that frame by a caret. So the velocity of the mirror in this
frame just before impact of the photon is v̂1 = 0 (hence β̂1 = 0 and γ̂1 = 1) and its velocity24

23This way we even don’t have to assume the mirror to be inertial, i.e. force-free, before arrival of the photon.
Our inertial frame simply is the momentary inertial frame at rest with respect to the mirror just before impact
of the photon, and it does not care about the velocities of the mirror some time before or (immediately) after
impact of the photon. By defining this inertial system at one moment in time, we have defined it for all times,
because we can of course calculate where any point of the system, whose velocity is fixed, had been prior to the
time when its velocity and that of the mirror were equal, and we can calculate where any point of the inertial
system will be in the far future, regardless of what the mirror is doing.

24Note that the vi are defined as velocity components along the direction ex′ , see Fig. 4, whereas in the emitter
frame and in the arbitrary observer frame, velocity components are taken along the direction ex = −ex′ , which
leads to various minus signs in some formulas.
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after reflection of the photon is −v̂2 with p̂2 = Mγ̂2v̂2. Then we have, according to Eq. (37),
β̂ = β̂2γ̂2/(1 + γ̂2) and obtain for the frequency change of the photon in this frame due to the
collision, calling the frequency before collision ν1 and that after collision ν̃1:

ν̃1
ν1

=
1 + β̂

1− β̂
=

1 + β̂2γ̂2/(1 + γ̂2)

1− β̂2γ̂2/(1 + γ̂2)
=

1 + γ̂2 + β̂2γ̂2

1 + γ̂2 − β̂2γ̂2
=

1 + γ̂2(1 + β̂2)

1 + γ̂2(1− β̂2)

=

1 +

√

1+β̂2

1−β̂2

1 +

√

1−β̂2

1+β̂2

=

√

1+β̂2

1−β̂2

+ 1+β̂2

1−β̂2

√

1+β̂2

1−β̂2

+ 1

=

√

1 + β̂2

1− β̂2
. (38)

(This is just evaluating formula (29) for the current frame of reference.)

What we find is that the photon does undergo a (usually small) frequency change in the pre-
collision inertial frame of the mirror (whereas it is reflected without frequency change in the
average frame of the mirror). We may relate this to frequency changes in the emitter frame
by using the basic Doppler formulas (without carets)

ν1 =

√

1 + β1
1− β1

ν , ν̃ =

√

1 + β1
1− β1

ν̃1 . (39)

However, we will rather look at the second special frame now, which is the after-collision
inertial frame of the mirror, moving at velocity −v2 in the emitter frame. Indicating velocity-
related quantities in that frame by an inverted caret, we obviously can write v̌2 = 0 (hence
β̌2 = 0 and γ̌2 = 1). The mirror velocity before reflection of the photon in the after-collision
frame is −v̌1 with p̌1 = Mγ̌1v̌1 and Ě1 = Mc2γ̌1, and obviously we must have v̌1 = −v̂2 due
to the reciprocity of the relative velocities of the pre-collision and after-collision frames. This
will become important later.

Moreover, we have β̌ = β̌1γ̌1/(1 + γ̌1) and obtain, calling the frequency of the photon before
collision ν2 and that after collision ν̃2,

25 from a calculation similar to (38):

ν̃2
ν2

=
1 + β̌

1− β̌
=

1 + β̌1γ̌1/(1 + γ̌1)

1− β̌1γ̌1/(1 + γ̌1)
= . . . =

√

1 + β̌1

1− β̌1
. (40)

Again, it is clear that the photon does change its frequency due to the collision process in the
after-collision frame (the change reduces to zero only for infinite mirror mass). We may relate
this to frequency changes in the emitter frame by using the basic Doppler formulas (without
inverted carets)

ν2 =

√

1 + β2
1− β2

ν , ν̃ =

√

1 + β2
1− β2

ν̃2 , (41)

but first we study the relationship between the pre-collision and the after-collision frames a
bit further.

The after-collision frame moves in the pre-collision frame at velocity −v̂2, so we may relate
the photon frequencies in the two frames using the standard Doppler formula:

ν2 =

√

1 + β̂2

1− β̂2
ν1 , ν̃1 =

√

1 + β̂2

1− β̂2
ν̃2 . (42)

25These are frequencies measurable in the after-collision frame.
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Combining the second formula of Eq. (42) with Eq. (38), we find

ν̃2 =

√

1− β̂2

1 + β̂2
ν̃1 =

√

1− β̂2

1 + β̂2

√

1 + β̂2

1− β̂2
ν1 = ν1 , (43)

i.e. the after-collision frequency of the photon in the after-collision frame is equal to the
pre-collision frequency of the photon in the pre-collision frame! We also have, from the first
formula of Eq. (42) and Eq. (40)

ν2 =

√

1− β̌1

1 + β̌1
ν̃2 =

√

1− β̌1

1 + β̌1

√

1− β̂2

1 + β̂2
ν̃1 = ν̃1 , (44)

where the last equality holds, because β̌1 = −β̂2. Hence, the photon changes frequency from
ν1 to ν̃1 in the pre-collision frame and it changes frequency from ν2 = ν̃1 to ν̃2 = ν1, i.e., by an
equal amount in the opposite direction in the after-collision frame. This is very interesting...

Let us now calculate the frequency change in the emitter frame. Using (39) and (41) together
with (43), we arrive at

ν =

√

1− β1
1 + β1

ν1 =

√

1− β1
1 + β1

ν̃2 =

√

1− β1
1 + β1

√

1− β2
1 + β2

ν̃ ,

ν̃

ν
=

√

1 + β1
1− β1

√

1 + β2
1− β2

(45)

This is a new formula for the double Doppler effect. It must be equivalent to (8) (together
with (7)), but this is not so straightforward to see. I will demonstrate the equivalence in the
next section.

Quattrini obtains this formula by a simpler calculation. My approach has the advantage of
making the physics more transparent. The crucial point to observe is that we have now used
not two but three frames of reference and that this in principle leads to four frequency shifts
instead of three before. Three of these are Doppler shifts, rather than two.

The three frames are, of course, the emitter frame, the pre-collision frame and the after-
collision frame. There is a Doppler shift from the frequency ν to ν1, involving a factor of
((1 + β1)/(1 − β1))

1/2, on switching from the emitter frame to the pre-collision frame. Then
there is a frequency shift from ν1 to ν̃1, involving a factor ((1 + β̂2)(1 − β̂2))

1/2 due to the
collision of the photon with the mirror.26 Switching now to the after-collision frame in the
description, the frequency of the photon changes again, due to the Doppler effect, now from
ν̃1 to ν̃2, which produces a factor ((1+ β̌2)(1− β̌2))

1/2 = ((1− β̂2)(1+ β̂2))
1/2 that cancels the

collision-induced shift, i.e., the frequency of the photon now is back to ν1 (because ν̃2 = ν1).
27

Finally, there is a Doppler shift between the after-collision frame and the emitter frame, from
frequency ν̃2 = ν1 to ν̃, and this involves a factor of ((1 + β2)/(1 − β2))

1/2. Since the two
frequency shifts of the middle part of the process cancel each other, all that remains are the
two factors ((1+β1)/(1−β1))

1/2 and ((1+β2)/(1−β2))
1/2, giving rise to (45), seemingly just

a double Doppler effect.

Formula (45) alone is insufficient to calculate a velocity from a measurement of the frequency
ratio ν̃/ν, which gives one parameter of the experiment only, because there are two velocities

26Note that β̂2 is negative, so this factor reduces the frequency.
27Steps 2 and 3 can be interchanged, i.e., we may transform the photon frequency ν1 directly into ν2, using the
Doppler shift factor ((1 + β̂2)(1− β̂2))

1/2, and then consider reflection in the after-collision frame, which shifts
the frequency to ν̃2, i.e., back to ν1.
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on the right-hand side, which cannot both be evaluated from a single parameter without
further information. So the formula is less useful in direct measurements than the result (8),
which always gives one a velocity result, even if that velocity will not exactly agree with either
v1 or v2, unless the mass of the mirror is infinitely large. However, formula (45) could be
very useful in the theoretical description of the “Quattrini” experiment where we have many
bounces back and forth by the photon, if we wish to take into account the fact that the
emitter itself also does not have infinite mass and therefore suffers a recoil. Using (45) instead
of (8) in the center-of-energy frame of the system would allow one to work with the actual
velocities of both the emitter and reflector before and after bounces, allowing one to avoid the
introduction of frames with average velocities. It would then be possible, in the calculation of
a sequence of bounces to use the calculated velocity changes on each bounce directly (as the
frames considered would always be momentary pre-collision or after-collision frames), instead
of first calculating a frame moving at an average velocity between the pre- and after-collision
velocities and then use that to get back to the actual velocities themselves, in order to prepare
the calculation for the next bounce. I will however not pursue the option of dealing with a
movable emitter. That would lead us too far astray.

Equivalence of several formulas for the double Doppler effect

My result (8), rewritten in terms of β and γ factors, reads:

ν̃

ν
=

1 + β

1− β
. where β =

β1γ1 + β2γ2
γ1 + γ2

. (46)

I first will show that this is the same as Eq. (45). There are some useful relationships involving
the β’s and γ’s allowing one to recast expressions without producing too many square roots.
We note

β2
1γ

2
1 − β2

2γ
2
2 =

β2
1

1− β2
1

− β2
2

1− β2
2

= 1 +
β2
1

1− β2
1

− 1− β2
2

1− β2
2

=
1

1− β2
1

− 1

1− β2
2

= γ21 − γ22 (47)

and both the initial and final expressions can be factorized with the help of a binomial expres-
sion:

(β1γ1 − β2γ2)(β1γ1 + β2γ2) = (γ1 − γ2)(γ1 + γ2)

⇒ β1γ1 + β2γ2
γ1 + γ2

=
γ1 − γ2

β1γ1 − β2γ2
. (48)

The second equation is valid, if we do not divide by zero, i.e., if the two velocities are different.
Its left-hand side is just the definition of β in (46). So let us use this:

ν̃

ν
=

1 + (γ1 − γ2)/(β1γ1 − β2γ2)

1− (γ1 − γ2)/(β1γ1 − β2γ2)
=

β1γ1 − β2γ2 + γ1 − γ2
β1γ1 − β2γ2 − γ1 + γ2

=
γ1(1 + β1)− γ2(1 + β2)

−γ1(1− β1) + γ2(1− β2)

=
(1 + β1)/γ2 − (1 + β2)/γ1
−(1− β1)/γ2 + (1− β2)/γ1

=
(1 + β1)

√

1− β2
2 − (1 + β2)

√

1− β2
1

−(1− β1)
√

1− β2
2 + (1− β2)

√

1− β2
1

=

√
1 + β1

√
1 + β2(

√
1 + β1

√
1− β2 −

√
1− β1

√
1 + β2)√

1− β1
√
1− β2(−

√
1− β1

√
1 + β2 +

√
1 + β1

√
1− β2)

. (49)

Close inspection shows that the expressions in parentheses in the numerator and denominator
are the same (the second term in the denominator expression is equal to the first of the

20



numerator and the first term in the denominator corresponds to the second in the numerator).
So these whole long parentheses cancel and we are left with

ν̃

ν
=

√

1 + β1
1− β1

√

1 + β2
1− β2

, q.e.d. (50)

This demonstrates that both formulas produce the exact frequency shift for the double Doppler
effect, regardless of the recoil of the mirror. Neither of them alone is sufficient to calculate
the pre-collision and after-collision velocities of the mirror. The first formula, however, gives
us the velocity (relative to the emitter frame) of an inertial frame of reference, in which the
photon is reflected without energy change, and this velocity agrees with the velocity of the
mirror for large mirror masses. In the latter case, the second formula can, of course, also be
used for the evaluation of the mirror velocity by setting v1 = v2.

If the mass of the mirror is known or has been measured, formulas for both v1 and v2 can be
developed using either double Doppler result. The easier approach seems to proceed via (50).
To obtain the additional information needed to calculate two quantities, we go back to our
initial energy and momentum equations (1,2), in order to obtain expressions for ν and ν̃ in
addition to their ratio.

hν +Mc2γ1 = hν̃ +Mc2γ2 , (51)

hν −Mc2β1γ1 = −hν̃ −Mc2β2γ2 , (52)

which can be compactly recast as

h(ν − ν̃)

Mc2
= γ2 − γ1 , (53)

h(ν + ν̃)

Mc2
= β1γ1 − β2γ2 . (54)

Adding and subtracting the two equations, we get expressions for ν and ν̃

2
hν

Mc2
= −(1− β1)γ1 + (1− β2)γ2 , (55)

2
hν̃

Mc2
= (1 + β1)γ1 − (1 + β2)γ2 . (56)

(Taking the ratio of (53) and (54), we can directly derive (46) and/or (50).) Noting that we
may rewrite Eq. (50) as

ν̃

ν
= (1 + β1)γ1 (1 + β2)γ2 =

1

(1− β1)γ1 (1− β2)γ2
, (57)

the idea is then to use either (55) or (56) to express one of the β-γ expressions by the other
and a mass term and to substitute this into (57) to obtain a result containing only one of
the velocities and the mass. We use Eq. (55), because that will produce ν on the right-hand
side rather than ν̃. ν is usually given in the experiment (it is the frequency that the emitter
creates), whereas ν̃ is to be determined by measurement.

We first isolate the terms dependent on the after-collision velocity (−v2):

(1− β2)γ2 = (1− β1)γ1 + 2
hν

Mc2
, (58)

and plug this into (57) to get

ν̃

ν
=

1

(1− β1)γ1((1− β1)γ1 + 2hν/(Mc2))
=

1

(1− β1)2γ21 + (1− β1)γ12hν/(Mc2)
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=
1

(1− β1)2/(1− β2
1) +

√

(1− β1)/(1 + β1)2hν/(Mc2)
,

ν̃

ν
=

1 + β1
1− β1 + 2hν/(γ1Mc2)

, (59)

which is the desired result and also an exact one, expressing the frequency ratio via terms
containing only the velocity v1 (related to the pre-collision state of the mirror) and the mass.
The right-hand side probably cannot be solved analytically for the velocity, except in the case
γ1 ≈ 1, but it would be no problem to evaluate the velocity numerically, once the measurement
of ν̃ and the mass M has been made. Note also that the term hν/(γ1Mc2) is the ratio of the
photon energy to the pre-collision energy of the mirror. The recoil energy does not appear in
the formula. (It is defined as the difference between the kinetic energies of the mirror after and
before the interaction with the photon, so here it would take the value Mc2(γ2 − γ1). Since
it depends on both velocities of the mirror, its appearance in a formula would render it more
difficult to use the formula for the evaluation of only one of the velocities.)

Finally, let us develop a formula for the after-collision velocity (−v2) of the mirror. Normally
that would be more interesting than the pre-collision velocity, because we would like to know
what velocity the mirror has after measurement of the Doppler shift, not what velocity it had
before. It does not have this velocity anymore after the experiment, so our measurement would
be less useful for further predictions of the mirror behavior.

We recast (55) as

(1− β1)γ1 = (1− β2)γ2 − 2
hν

Mc2
, (60)

and obtain from (57)

ν̃

ν
=

1

(1− β2)γ2((1− β2)γ2 − 2hν/(Mc2))
=

1

(1− β2)2γ22 − (1− β2)γ22hν/(Mc2)
,

ν̃

ν
=

1 + β2
1− β2 − 2hν/(γ2Mc2)

, (61)

which is again an exact result, now allowing us to express the frequency shift by the after-
collision velocity of the mirror and its mass (plus the frequency of the incoming photon).

Of course, we have

ν̃

ν
=

1 + β

1− β
=

√

1 + β1
1− β1

√

1 + β2
1− β2

=
1 + β1

1− β1 + 2hν/(γ1Mc2)
=

1 + β2
1− β2 − 2hν/(γ2Mc2)

,

(62)

as no approximations were used during the transformation of one of these formulas into an-
other.

Conclusions

Let me briefly summarize what has been achieved in this essay.

• An exact result for the double Doppler effect in the case of finite reflector mass, i.e.,
in the presence of recoil, has been derived. The treatment of the reflection process was
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done in a large variety of inertial systems,28 using energy and momentum conservation
in the same form in each of them, meaning that the equivalence of inertial systems
(i.e., the relativity principle) was applied. Obviously this disproves Quattrini’s claim of
inapplicability of the equivalence of inertial systems.

• The derived formula is formally identical to the infinite-mass result and agrees with what
is predicted by a succession of two Lorentz transformations, thus disproving Quattrini’s
claim to the contrary. All that is different with respect to the infinite-mass case is
that the velocity of the inertial system to which the formula refers is not identical with
the mirror velocity, because the mirror does not stay at rest in the same inertial system
during the collision with the photon, unless its mass is infinite. Rather the velocity of the
inertial system is a well-defined average of the pre-collision and after-collision velocities
of the mirror.

• It was clearly pointed out that inertial systems are not attached to the masses the motion
of which may have served for their original definition. Whenever a force is exerted on
the mass, it accelerates and loses its inertial state of motion. That does of course not
destroy the inertial system, in which the mass originally was at rest. All that happens
is that the mass now moves in this inertial system instead of being at rest.

• The formula derived was demonstrated to be mathematically equivalent to various for-
mulas for the double Doppler effect given by Quattrini, who wanted to show that my
formula could only be an approximation. Since Quattrini’s formulas were not approxi-
mations, mine is not an approximation either.

The picture that emerges of the double Doppler effect, from these derivations, is that it is com-
posed of three phenomena, in general, only one of which is dynamical. That is the frequency
shift of the photon due to the collision with the mirror. Frequencies and energies are frame de-
pendent, so that frequency shift is different in different inertial systems, in general. The other
two phenomena are the two Doppler shifts relating the photon frequencies (before and after
the encounter with the mirror) in the inertial system under consideration to the frequencies
observed by the emitter, i.e., the observer measuring the double Doppler effect. These Doppler
shifts have nothing to do with energy conservation. The energy conserving collision process,
on the other hand, does not produce a Doppler frequency shift. The definition of the Doppler
effect says it is a frequency change between two observers moving with respect to each other;
this is not the case for the frequency shift in the collision process which is a shift for a single
observer.

This distinction is corroborated by a three-frame description of the effect, in which we use,
besides the emitter frame, the pre-collision and after-collision frames of the mirror (both
inertial), one to describe the collision-induced frequency change and the other to transfer it
to a frame that is more convenient for the description of the returning photon. Here, it turns
out that the Doppler effect between the frames cancels the collision-induced frequency change,
emphasizing that these are two different types of frequency modification and giving a physical
interpretation to Quattrini’s two-velocity double Doppler formula.

Finally, it may be noted that here we have used the quantum mechanical relation between
energy and frequency to describe electromagnetic waves as photons, i.e., as particles, and the
interaction with the mirror as a collision process. Of course, the double Doppler effect, not
being a quantum mechanical effect, can also be derived in purely classical electrodynamics,
without any use of the energy-frequency relationship. What would have to be done is the
usual description of the electromagnetic problem via an ansatz for the incoming, transmitted
and reflected waves and a setup of the boundary conditions for these waves on the mirror

28Essentially, in all inertial systems moving parallel to the photon wave vector.
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surface, for a moving mirror instead of, as usual, for a fixed one. Poynting’s theorem could be
used for a calculation of the momentum transfer between the field and the mirror, but energy
conservation would not arise directly in the approach. Instead, the matching conditions for
the three waves29 at the mirror surface, which lead to the requirement of equal frequencies for
a mirror at rest, would lead to different frequencies for the incoming and reflected waves, due
to the Doppler effect. (So the description in classical electrodynamics would seem to always
require at least two frames, including the frame of the moving mirror surface.)
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