
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/382239104

CONSERVATION LAWS and applicability OF THE EQUIVALENCE OF INERTIAL

FRAMES: the Doppler RADAR

Preprint · July 2024

CITATIONS

0
READS

361

1 author:

Stefano Quattrini

Ordine degli ingegneri della provincia di Ancona

41 PUBLICATIONS   10 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Stefano Quattrini on 26 August 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/382239104_CONSERVATION_LAWS_and_applicability_OF_THE_EQUIVALENCE_OF_INERTIAL_FRAMES_the_Doppler_RADAR?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/382239104_CONSERVATION_LAWS_and_applicability_OF_THE_EQUIVALENCE_OF_INERTIAL_FRAMES_the_Doppler_RADAR?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Quattrini?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Quattrini?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Quattrini?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Quattrini?enrichId=rgreq-0db496cd00dfc136c193945f820db785-XXX&enrichSource=Y292ZXJQYWdlOzM4MjIzOTEwNDtBUzoxMTQzMTI4MTI3MzczMTg1MkAxNzI0NjkxNzIxOTA4&el=1_x_10&_esc=publicationCoverPdf


                                 THE DOPPLER EFFECT A MATTER - RADIATION                                  

                              INTERACTION, CONSEQUENCE OF CONSERVATION LAWS 

Stefano Quattrini 11/08/2024 

ABSTRACT 

The Relativistic Doppler effect was originally derived using Lorentz Transformations. In the same paper the 
Doppler RADAR or reflecting mirror formula, was proposed, which results in a variation of energy of the 
radiation in the inertial frame of the RADAR. If also the reflector is kept inertial, the Doppler RADAR formula 
infringes upon conservation laws, unless a compensating force makes the work to keep the mirror inertial. To 
avoid resorting to external agents, but complying with conservation laws, Doppler effect must be based on 
energy and momentum conservation, accounting for recoil which is always present, considering that at least 
one frame is not inertial. 

INTRODUCTION 

The Relativistic Doppler effect is mostly considered a transformation law for frequencies between different 
frames of reference []  found in Einstein’s famous paper in 1905, as an application of Lorentz 
Transformations, derived as well in such script. Consider two inertial frames, IRF0 and IRF1, approaching at 
a relative speed w, with an ideal mirror attached to IRF1 while an emitter of electromagnetic (EM) waves in 
IRF0. When EM waves are emitted, they bounce back and the longitudinal Doppler effect, an experimentally 
verified phenomenon, for approaching bodies, shows that the frequency of the radiation increases after each 
detection. In the same paper Einstein found the Doppler RADAR formula.  Below is the simple one-
dimensional case [1],[2],[4] experimentally verified to a certain order of accuracy,  

fr= f0(1+β)/(1-β)                                                                                                                               (1) 

were fo is the frequency of emission in one frame and fr  is the reception frequency in the same 
frame and β=v/c.  

 
 
 

 

 
 

Fig. 1. The Doppler Radar found with Relativistic Doppler formulas 

Well known Doppler RADAR applications, use Eq.(1) where the speed of a moving object v=cβ is 
the quantity to be estimated. The energy content of the initially emitted radiation is Eph = nhf0 hence 
From Eq.(1) it is   

Er ≈ nhf0(1+β)/(1-β) =Eph(1+β)/(1-β)                                                                                               (2) 

since the RADAR is an inertial frame it is possible to compare the energy emitted with the one 
received back same as found in [1] (Eq.13) :  ΔE ≡ Er-Eph = -Eph 2 β/(1-β)                                   (3)                 

That is basically the work W done on the mirror by radiation in case of inertial motion. The sign is 
the opposite than the one derived in [1] since here it is considered the final energy minus the initial. 

fr= f’o/[(1-β) γ] 
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In the case of the object approaching to the RADAR, β < 0,  as the frequency of the radiation 
increases, in each inertial frame, the energy does the same in the RADAR’s frame. An excess 
energy is detected in RADAR inertial frame, [1] such that:  W=ΔE > 0  from  Eq.(3).   

At low speeds where β  is much smaller than one, and E0 is small, it is reasonable to consider ΔE≈0,  
typically sufficient for practical purposes. The authors in [1] show that the variation of the 
momentum of the mirror multiplied by c, compensates the work done by the EM waves on the 
mirror. Although possible to keep the system inertial that way, there is no such compensating 
momentum in any real case, it can be only a theoretical situation. 

APPLICATION OF CONSERVATION LAWS 

In general, the energy difference expressed in Eq.(3), for β < 0  comparable to unity (high speeds), 
is not negligible and would represent additional energy absorbed by an object stationary in IRF0. As 
a generic case with an EM wave train, where EEM and PEM are its electromagnetic energy and 
momentum  ΔP/PEM = ΔE/EEM = - 2 β/(1-β)   and considering the same for the RADAR and mirror      

ΔP/PRADAR = ΔE/ERADAR ΔP/Pmirror = ΔE/Emirror = 0         

Only with the help of an external counterbalancing force responsible of an equal and opposite effect 
of the radiation such as ΔE/E = 2 β/(1-β), it is possible to keep the system inertial and consider that 
formula as being exact. Otherwise, to keep a constant speed in the presence of interactions as 
presented in [1], it is necessary an unrealistic requirement of infinite masses, making the formula 
not acceptable. The authors [1] forced a compliance with conservation laws but as a matter of fact 
they accepted that some external energy must be provided to the approaching mirror. 

A realistic scenario involves at most one inertial frame where the mirror can make a finite work 
against the radiation with a recoil to the pulse. Radiation recoil (supported by experimental 
evidence) is a real effect consequence of momentum-energy conservation of the absorbed radiation. 
That draws its energy from the kinetic energy of the non-inertial mirror, a finite mass object which 
slows down, while providing energy to increase the energy content of the EM wave. Considering 
the RADAR fixed on an embankment (IRF0) and the mirror on a wagon with negligible mass m 
compared to the embankment (attached to Earth), the wagon must be affected by radiation recoil for 
how negligible it might be.   

With β0 and β1 the initial and final relative speeds,  E0=mc2, the rest energy of the mirror,  following 
what stated in [4] from equation (14 and 15), the key equation relevant to energy conservation 
becomes  Eini = γ0E0

 + hf0 , Efinal = γ1E0
 +hf1;  h(f1- f0)= E0

 (γ0 - γ1) with γ1 =1/sqrt(1- β12),   

for momenta it is Pini= γ0E0 β0/c -hf0/c  Pfinal = γ1E0 β1/c + hf1/c  ; Pfinal = Pini   

γ1E0 β1/c + hf1/c= γ0E0 β0/c - hf0/c  or  h(f1+f0)= E0 (γ0 β0 -γ1 β1)   

the target is to express f1 in  term of γ0, β0, E0
 , f0  

A significative partial result found also in [4] is f1/f0 = γ0(1+β0) γ1(1+β1)  tells us that the ratio of the 
frequencies depends on two Doppler effects at the two different speeds.                           

 

 



With some algebraic manipulation (SEE APPENDIX), the ratio of the frequencies becomes 

f1/f0 = (1+β)/[(1-β)(1+2hf/γE0)] = (1+β)/[1-β+2hf0/(γE0)-2βhf0/γE0] ≈ (1+β)/(1-β +2 hf0/γE0)   (4) 

that considers the fact that the term 2βhf0/γE0 is usually much smaller than 2 h f0/γ0E0  

1) With β = 0, negligible relative speed  Compton Effect  f1/f0 = 1/[1+2Eph/(mc2)] 
 

2) Negligible mass of the absorbed radiation Eph / γ0mc2 <<1 ,   Doppler Radar Eq.(1) 

the energy shift ratio is  ΔE/E0 = Δf/f0= 2 (β – Eph/(γ0E0))/[1- β +2Eph/(γ0E0)]                           (5) 

The speed cannot remain constant cβ after every bounce of radiation in case of perfect reflectors. 
Since the relative variation of the kinetic energy of the mass and the one of radiation must be the 
same (γ0-γ1)E0 = nh(f1-f0) where E0=mc2.  In this case, the same energy is present, but it is taken 
from the wagon of mass m0. ΔEph = E0 (γ0-γ1), hence ΔE/E0 = (γ0-γ1) . A net kinetic energy transfer 
of (γ0-γ1)E0 >0 occurs from the mirror to the photon in the approaching case, on the contrary  (γ0-
γ1)E0 < 0 there is a net energy transfer from the photon to the mirror in the departing case nh(f1-f0) < 
0. The frequency of the photon decreases, when the mirror departs from the source (RADAR). 

The recoil energy ΔEph must always be finite and different from zero, to allow the conservation of 
energy, but with large masses the recoil effect which involve the speed change of at least one mass 
is usually negligible.  

The following equation (γ0-γ1)E0 = nh(f1-f0) is central for the explanation of the effect. If both Radar 
and mirror are inertial, by definition, γ0 = γ1 > 1. No relative speed change is involved, (γ0-γ1)E0 = 0 
then nh(f1-f0) = 0,  such that Δf = 0, no frequency shift with β>0, no recoil energy. 

But since nh(f1-f0) >0 (non-zero recoil energy), the effect is well approximated experimentally as 
Δf/f0= 2 β/(1- β) >0 with β  >0, the γ0 = γ1 must be false, hence there is no room for two inertial 
frames, but just one. 

The wagon slows down, diminishing its kinetic energy by ΔE in the centre of mass (COM) of the 
system (RADAR in this case), thus reducing its relative speed v in the COM by 2E0/γmc. The effect 
of radiation recoil on the embankment is  orders of magnitude smaller, virtually negligible, making 
it acceptable for the embankment to be constantly attached to IRF0. This scenario avoids the 
perpetuum mobile of the first kind, providing also a sound physical framework for the Doppler 
effect.  

The radiation recoil is strictly dependent on an exchange of energy with a body of a certain mass which loses 
some kinetic energy in the COM of the system. The Doppler effect which is an effect of matter radiation 
interaction, must rely only on energy and momentum conservation as a physical foundation. The solution 
found can be approximated by the formula used for practical purposes.  

Using Lorentz Transformations instead, to find the Doppler or Doppler RADAR , relying on the principle of 
inertial frames, the compliance with the non-negotiable principle of physics is missing. The energy of an 
isolated system cannot increase over time, even for a limited but finite amount of time, allowing to extract a 
net energy amount form nothing. Lorentz Transformations used to find the Doppler RADAR formula, where 
radiation exchange is present, are not properly used. The equivalence of inertial frames, upon which they are 
based, is unsuitable for such application.  



The Doppler Radar formula derived from Lorentz Transformations infringes upon conservation laws and can 
only serve as a good approximation in real problems, where radiation recoil effects can be neglected 
(although always present). The  Eq.(3) is valid when the energy of radiation is negligible in comparison to 
the rest energy of the massive reflector: low momentum of radiation. 

When (4) reduces to (3) at higher speeds due to the relativistic mass of the mirror, would make the 
infringement of conservation laws even worse: ΔE = 2Eph β/(1-β), unless the variation of energy of the 
radiation corresponds to actual variation of (γ0-γ1)E0 , where γ0-γ1 gets negligibly small, but never 0. 

CONCLUSIONS 

Applying Lorentz transformations, to a problem involving an exchange of EM radiation between inertial 
frames, leads to the Doppler Radar formula. It is then configured as a violation of energy conservation laws 
in each inertial frame. It is impossible to relate two inertial frames with light signals and obtain reliable 
information at any level of accuracy using Lorentz Transformations, thus the equivalence of inertial frames 
is falsified by a noncompliance with energy conservation laws. Doppler effect and every problem involving 
radiation frequency shift, should be treated with at most one inertial frame. Considering a very superficial 
analysis, Doppler effect might look like an observer dependent phenomenon, but its origin is the exchange of 
energy momentum between mass and radiation alone. Radiation recoil and variation of momentum and 
kinetic energy of the reflectors are necessary to give account to any realistic scenario. 
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APPENDIX 

ENERGY and MOMENTUM PRIOR AND AFTER THE ABSORPTION AT THE RADAR 

a) h(f1+f0)= E0 (β0γ0 -β1γ1)  b)  h(f1- f0)= E0
 (γ0 - γ1) 

c) γ0= 1/sqrt(1- β02) ,   d) γ1= 1/sqrt(1- β12)  

From (A)  (f1- f0 ) = E0/h (γ0 - γ1)                                                                                              (a1) 

From (B)  (f1+f0)=  E0/h (β0γ0 -β1γ1)                                                                                        (b1) 

With (a1) and (b1) it is  S=(f1+f0)=  E0/h (β0γ0 -β1γ1),   D= (f1- f0 ) = E0/h (γ0 - γ1) 

f1 /f0 = (S+D)/(S-D)  = [(β0γ0 -β1γ1)+ (γ0 - γ1)] /[(β0γ0 -β1γ1)-(γ0 - γ1)] = 

[β0γ0 + γ0- β1γ1 - γ1] /[β0γ0 -β1γ1- γ0 + γ1] = [γ0(1+β0) - γ1 (1+β1)] /[(β0γ0 - γ0 + γ1-β1γ1)] 

f1 /f0 = [γ0(1+β0) - γ1 (1+β1)] /[γ0 (1-β0)+ γ1(1-β1)]                                                                        (e) 

working in (e) with equations c and d and considering that  γ(1+β) =√[(1+β)/(1- β)]  

 f1 /f0 = [√[(1+β0)/(1- β0)] - √[(1+β1)/(1- β1) ]/ [√[(1-β0)/(1+ β0)] + √[(1-β1)/(1+ β1)] 

Numerator [√[(1+β0)(1- β1)] - √[(1+β1)(1- β0)] / [√(1- β0) (1- β1) ] = N/[√(1- β0)√(1- β1) ] 

denominator is N /[√(1+ β0)√(1+ β1) ].  

f1 /f0 = √[(1+β0)(1+β1)]/ √[(1-β0)(1-β1)] = γ0(1+β0) γ1 (1+β1)   double doppler                             (f) 

by considering  S+D =  (f1+f0)+ (f1- f0 )  =  E0/h (β0γ0 -β1γ1) + E0/h (γ0 - γ1) 

2f1/ E0/h =  (β0γ0 -β1γ1) + (γ0 - γ1);    2 h f1/ E0 =  γ0 + β0γ0 -β1γ1 - γ1;  

β1γ1 + γ1 =  γ0 + β0γ0 -2 h f1/ E0;  γ1(1+β1)  =   γ0 (1+ β0 ) -2 h f1/ E0                                                                (g) 

(γ0 (1+ β0 ) - γ1(1+β1)) E0/ 2 h = f1      the difference of the two doppler effects gives that                                                         

replacing (g) in (f) f1 /f0 = γ0(1+β0) [γ0 (1+ β0 ) -2 h f1/ E0] = (1+ β0)/(1- β0) -2 h γ0(1+β0) f1/ E0 

= (1+ β0)/(1- β0) -2 h γ0(1+β0)(1- β0) f1/E0 = (1+ β0)/(1- β0) -2 h f1/γ0E0 

f1 /f0 = (1+ β0)/(1- β0) -2 h f1/ γ0E0 ;   f1 = f0 (1+ β0)/(1- β0) -f0 2 h f1/ γ0E0                                                 (h) 

solving (g) in f1,  f1 = [f0 (1+ β0)/(1- β0)] /(1+2 h f0/γ0E0) = f0 (1+ β0)/[(1- β0)(1+2 h f0/γ0E0)]; 

f1/ f0  = (1+ β0)/[(1- β0) (1+2 h f0/γ0E0)] = (1+ β0) /(1- β0 +2 h f0/γ0E0 - β0 (2 h f0/γ0E0))  

(1+ β0) / (1- β0 +2 h f0/γ0E0 - β0 (2 h f0/γ0E0)) ≈ (1+ β0) / (1- β0 +2 h f0/γ0E0)  
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