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Organization of the talk
• Heisenberg model and CCM
• Coupled cluster method

• application to quantum spin systems
• spin stiffness
• excited state

• Results
• J–J ′ model
• J1–J2 model
• square lattice, triangular lattice

• Conclusions
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Heisenberg model, spin 1/2, two dimensional

H =
∑

i,j

Jijsisj

ground state HAFM on square and triangular lattice:

→ Néel ordered

important mechanisms to destroy magnetic long-range order (LRO):

competition of bonds:

• higher quantum fluctuations → suppression of long-range order,

formation of local singlets; e.g., CaV4O9, SrCu2(BO3)2

• frustration → my yield to PT to noncollinear (spiral) states in the

classical model; quantum fluctuations – favor collinear order

→ my yield (together with quantum fluctuations) to quantum

paramagnetic phase
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Heisenberg model and CCM
with CCM it can be calculated in higher orders:

• ground state energy, magnetization
• new: stiffness, gap

CCM is able to describe (for example in the J–J ′ model)
• frustrated incommensurate spiral phase
• quantum phase transition without frustration

here: quantum phase transition with frustration
→ J1–J2 model
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Coupled cluster method – CCM
I. choose a model state |Φ〉 and a set of creation operators (C+

I )

CI |Φ〉 = 0 ∀I 6= 0,
∑

I

C+
I |Φ〉〈Φ|CI = 1

II. ansatz for the ground state |Ψ〉 with the correlation operator S

|Ψ〉 = eS |Φ〉, S =
∑

I 6=0

SIC
+
I ; 〈Ψ̃| = 〈Φ|S̃e−S , S̃ = 1 +

∑

I 6=0

S̃ICI

III. ket-state equations (non linear), with H̄ = 〈Ψ̃|H|Ψ〉
∂H̄

∂S̃I

= 0 ⇔ 〈Φ|CIe
−SHeS |Φ〉 = 0, ⇒ ket coefficients SI , ⇒ |Ψ〉,

⇒ E = 〈Φ|e−SHeS |Φ〉

IV. bra-state equations (linear):
∂H̄

∂SI
= 0, ⇒ bra coefficients S̃I , ⇒ 〈Ψ̃|, ⇒ Ā = 〈Ψ̃|A|Ψ〉
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CCM – application on spin systems

I. Selection of |Φ〉: classical spin state

⇒ S =
∑

i1

Si1s
+
i1

+
∑

i1i2

Si1i2s
+
i1
s+

i2
+

∑

i1i2i3

Si1i2i3s
+
i1
s+

i2
s+

i3
+ · · ·

II. approximation of S – LSUBn

• approximation of S is the only approximation in the CCM
• LSUBn: local approximation, including correlations with

up to n spins
• hierarchical approximation, LSUB∞ becomes exact
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CCM – Fundamental configurations
example for square lattice:
LSUB8 with 259 types of connected fundamental configurations
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Spin stiffness
• spin stiffness ρs measures the rigidity of the spins with

respect to a small twist θ of the direction of spin between
every pair of neighboring rows:

ρs =
d2

dθ2

E0(θ)

N

∣

∣

∣

∣

θ=0

• ρs > 0 → LRO, systems are stiff
• ρs = 0 → no LRO, systems are not stiff
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CCM – calculation of the spin stiffness
• introducing the twist θ: appropriate changing of the classical spin state of

|Φ〉, → doing the CCM, → ground-state energy in dependence of θ

• twist θ for the square lattice:

0θ

+ θ +2 θ

+2 θ+ θ−

− θ 0a)

• twist θ for the triangular lattice:

−θ/2

0−θ

60°

+θ

cos(60°)θ =+θ/2

+2θ

+3θ/2

x

b)

• twist is introduced along rows in x direction.
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CCM – Excited-State Formalism
• apply linearly an excitation operator Xe to the ket-state wave function:

|Ψe〉 = Xe|Ψ〉 = XeeS|Φ〉, Xe =
∑

I 6=0

X e
I C+

I

• using Schrödinger equation Ee|Ψe〉 = H|Ψe〉 gives for the excitation energy

εe ≡ Ee − Eg

εeX
e|Φ〉 = e−S[H,Xe]eS|Φ〉

• apply 〈Φ|CI

⇒ set of eigenvalue equations

εeX
e
I = 〈Φ|CIe

−S[H,Xe]eS|Φ〉 ,∀I 6= 0
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CCM – Excited-State Formalism:
application on spin systems
I. Selection of Xe: classical spin state

⇒ Xe =
∑

i1

Xi1s
+
i1

+
∑

i1i2

Xi1i2s
+
i1
s+

i2
+

∑

i1i2i3

Xi1i2i3s
+
i1
s+

i2
s+

i3
+ · · ·

II. approximation of X:
• similar to the ground state

• but: choose configurations which change sTz by ±1

• use the same approximation level (e.g., LSUBn) as for
ground state
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Applications and Results
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J − J ′ model

J

J

A

B

• J = 1, J ′ > J : quantum competition;

at J ′ = J ′
s phase transition

LRO ↔ dimerized paramagnetic phase

with local singlets:

• J , J ′ different signs: frustration → spiral state

known results with CCM:

• phase transition to the dimerized phase can be described

by magnetization, gap, and spin stiffness

• frustrated region: quantum fluctuations favor collinear order

PRB 61, 14607 (2000); PRB 64, 0244331 (2001)
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J − J ′ model: new results with CMM
J = 1, J ′ > J , transition to the dimerized paramagnetic phase

• influence of the Ising anisotropy ∆

sisj → sx
i s

x
j + sy

i s
y
j + ∆sz

i s
z
j

on the position of the quantum critical point J ′
s:

→ linear relation J ′
s(∆) ∝ α∆ with α ≈ 2.3 . . . 3.0

R. Darradi, J. Richter and S.E. Krüger, J. Phys. Condens. Matter 16, 2681-2687 (2004))

• influence of the spin quantum number s on the position of the quantum

critical point J ′
s:

J ′
s ∝ s(s + 1)

increase of J ′
s with s → diminishing of quantum effects

R. Darradi, J. Richter and D.J.J. Farnell, J. Phys. Condens. Matter 17, 341-350 (2005)
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J1–J2 model

2 1

A

B

J J

• J = 1 – antiferromagnetic

• J2 > 0 parameter, frustration

• at J2 = J c
2 frustration (together with quantum fluctuations) destroys LRO

→ quantum paramagnet (magnetically disordered phase)
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J1–J2 model: magnetization
• sublattice magnetization M versus J2 obtained by CCM-LSUBn

• Néel LRO disappears at J c
2 ≈ 0.50 with extr1,

and at J c
2 ≈ 0.434 with extr2

• new: up to LSUB10 with 29605 configuration (using the code of Damian

Farnell)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6

M

J2

LSUB4
LSUB6
LSUB8

LSUB10
ext1.LSUB4-10
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extr1 ≡ a0 + a1(1/n) + a2(1/n)2

extr2 ≡ a0 + b1(1/n)b2

• at J2 = 1 extr1 is better approximation

• at the critical point J c
2 extr2 seems to

yield better results

• reason: scaling rules often change at a

phase transition

→ use an approximation (extr2) with

variable exponents
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J1–J2 model: spin stiffness
• spin stiffness ρs versus J2 obtained by CCM-LSUBn

• Néel LRO disappears at J c
2 ≈ 0.466 with extr1. and J c

2 ≈ 0.374 with extr2.
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extr1.LSUB4-8
extr2.LSUB4-8

extr1 ≡ a0 + a1(1/n) + a2(1/n)2

extr2 ≡ a0 + b1(1/n)b2

• again: extr1 better at J2 = 1,

extr2 better at J2 = J c
2
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J1–J2 model: gap
• Néel ordered state ↔ no gap

• quantum paramagnet ↔ gap
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J1-J2 Model

LSUB4
LSUB6
LSUB8

extrapolated:4,6,8

number of

configurations:
LSUBn gs ex

4 7 6
6 75 91
8 1287 2011

• → Néel LRO disappears at J c
2 ≈ 0.34 . . . 0.42
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Conclusions: J1–J2 model
• already known: ground state (energy, magnetization)

Bishop, Farnell, Parkinson PRB 58, 6394

• new results:
• magnetization: CCM-LSUB10

extrapolation for calculating J c
2

• spin stiffness
• gap

• with all three measures:
transition from Néel LRO to quantum paramagnet
(magnetically disordered phase) can be described
→ approximation of J c

2
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Square lattice: magnetization
• CCM LSUBn approximation with n = {2, 4, 6, 8, 10} and extrapolated

results

• NF – number of fundamental configurations

• Eg/N – GS energy per spin

• M – sublattice magnetisation

NF Eg/N M/Mclas

LSUB2 1 −0.64833 0.84143
LSUB4 7 −0.66366 0.76480
LSUB6 75 −0.66700 0.72728
LSUB8 1287 −0.66817 0.70484
LSUB10 29605 −0.66870 0.68966
Extrapolated CCM – −0.66960 0.610
3rd order SWT∗ – −0.66999 0.6138
QMC∗∗ – −0.669437(5) 0.6140(6)

∗ Hamer et al. PRB 46, 6276 (1992); ∗∗ Sandvik PRB 56, 11678 (1997)
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Square lattice: spin stiffness

• CCM:

LSUBn number eqs. stiffness ρs

2 3 0.2574
4 40 0.2310
6 828 0.2176
8 21124 0.2097

extr1 – 0.1812

• comparison with

other methods:

method ρs

LSWT 0.1912
2nd SWT 0.1810
3rd SWT 0.1747
series exp. 0.182
exact diagon. 0.183
quantum Mone Carlo 0.199

→ CCM in excellent agreement with the best results obtained by other means
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Triangular lattice: spin stiffness
parallel stiffness, i.e., the spins are rotated by the twist θ within the plane of

the system

• CCM:

LSUBn number eqs. stiffness ρs‖

2 3 0.1188
3 14 0.1075
4 67 0.0975
5 370 0.0924
6 2133 0.0869

approx. – 0.0585

• comparison with

other methods::

method ρs‖

exact diagonalization 0.05
LSWT 0.080

Schwinger-boson approach 0.088
CCM 0.060

→ improved results by CCM (LSWT is to large)
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Conclusions
• CCM leads to quite accurate results for quantum spin

systems
(ground state and first excitation)

• qualitativly correct description of GS order-disorder
transitions

• no problems with frustration and incommensurate spiral
phases

• higher spin s > 1/2 also possible

some further things to do in high-order CCM:
• calculation of correlation function
• dimerized state as CCM ground state

Sven Krüger, CCM for quantum spins – p.23/23


	
	{Large Organization of the talk}
	{large Heisenberg model, spin $1/2$, two dimensional}
	{large Heisenberg model and CCM}
	{large Coupled cluster method -- CCM}
	{large CCM -- application on spin systems}
	{large CCM -- Fundamental configurations}
	{large Spin stiffness}
	{large CCM -- calculation of the spin stiffness}
	{large CCM -- Excited-State Formalism}
	{large CCM -- Excited-State Formalism:}
	
	{large $J-J'$ model}
	{large $J-J'$ model: new results with CMM}
	{large $J_1$--$J_2$ model}
	{large $J_1$--$J_2$ model: magnetization}
	{large $J_1$--$J_2$ model: spin stiffness}
	{large $J_1$--$J_2$ model: gap}
	{large Conclusions: $J_1$--$J_2$ model}
	{large Square lattice: magnetization}
	{large Square lattice: spin stiffness}
	{large Triangular lattice: spin stiffness}
	Conclusions

