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Heisenberg model, spin 1/2, two dimensional

H = Z JijSiSj
]

ground state HAFM on square and triangular lattice:

— Neéel ordered

Important mechanisms to destroy magnetic long-range order (LRO):
competition of bonds:

higher quantum fluctuations — suppression of long-range order,
formation of local singlets; e.g., CaV,Og4, SrCu,(B0Os),

frustration — my vield to PT to noncollinear (spiral) states in the
classical model; quantum fluctuations — favor collinear order

— my Yyield (together with quantum fluctuations) to quantum
paramagnetic phase
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Heisenberg model and CCM

with CCM it can be calculated in higher orders:
ground state energy, magnetization
new: stiffness, gap

CCM is able to describe (for example in the J-J' model)
frustrated iIncommensurate spiral phase
guantum phase transition without frustration

here: quantum phase transition with frustration
— J1—Jo model
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Coupled cluster method - CCM

. choose a model state |®) and a set of creation operators (C7)

Cil®) =0 VI#0, » Cf|®)(®C;=1
I

I1. ansatz for the ground state | W) with the correlation operator S

T) =e|D), S=) SCFf; (U] =(®[Se 5, S=1+) SC;
140 140
11, ket-state equations (non linear), with H = (¥ |H|¥)

OH "
— =0 (®|Cre °He”|®) = 0, = ket coefficients Sy, = | ),

OST
= F = (®le " He"|®)

| V. bra-state equations (linear):
OH . . - L
= 0, = bra coefficients S;, = (V|, = A = (V|A|¥)

OST
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CCM - application on spin systems

|. Selection of |®): classical spin state
— S — ZS“SZ —+ ZSiliQSZS;Z -+ Z SiliQiSSZS’I—:ZS’I—:; -+ ...
11 1112 111213

|1. approximation of S — LSUBn

approximation of .S' is the only approximation in the CCM

LSUBnR: local approximation, including correlations with
up to n spins

hierarchical approximation, LSUBoo becomes exact
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CCM - Fundamental configurations
example for sguare lattice;

LSUBS8 with 259 types of connected fundamental configurations
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Spin stiffness

spin stiffness p, measures the rigidity of the spins with
respect to a small twist & of the direction of spin between
every pair of neighboring rows:

@ Ey(0)
Pa= a2 N |,

ps > 0 — LRO, systems are stiff
ps = 0 — no LRO, systems are not stiff
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CCM - calculation of the spin stiffness

Introducing the twist 6: appropriate changing of the classical spin state of
|®), — doing the CCM, — ground-state energy in dependence of 6

a -6 0 +0 +26

twist 6 for the square lattice:

-0 0 +0 +20

b) -08/2 cos(60°)0=+8/2 +30/2

twist 6 for the triangular lattice: /\M

-0 0 +0 +20

P —
X

twist is introduced along rows in x direction.
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CCM - Excited-State Formalism

apply linearly an excitation operator X ¢ to the ket-state wave function:
W) = X°|U) = X5[D), X®=)> X/Cf
40

using Schrodinger equation E.|V.) = H|W,) gives for the excitation energy
ee = b — B,
€. X°|®) = e °[H, X¢)e|®)

apply (®|C'
= set of eigenvalue equations

e XE = (®|Cre°[H, X¢e®|®) ,VI # 0
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CCM - Excited-State Formalism:
application on spin systems
|. Selection of X*“: classical spin state
= X = ZX“SZ -+ Z ?('WZSZS;; -+ Z Xi1i2i38+8+8+ + -

111213
1112 111213

|1. approximation of X:
similar to the ground state

but: choose configurations which change s by +1

use the same approximation level (e.g., LSUBn) as for
ground state
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Applications and Results
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J — J' model

known results with CCM:

J =1, .J > J:. quantum competition;
at /' = J. phase transition

LRO « paramagnetic phase
with

e

J, J' different signs: frustration — spiral state

phase transition to the dimerized phase can be described
by magnetization, gap, and spin stiffness
frustrated region: quantum fluctuations favor collinear order

PRB 61, 14607 (2000): PRB 64, 0244331 (2001)
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J — J' model: new results with CMM

J =1, J" > J, transition to the dimerized paramagnetic phase

Influence of the Ising anisotropy A

S;Sj — 5755 + s]s7 + As}s]

on the position of the quantum critical point J:

— linear relation J(A) < aA with o =~ 2.3...3.0

R. Darradi, J. Richter and S.E. Kriiger, J. Phys. Condens. Matter 16, 2681-2687 (2004))

Influence of the spin quantum number s on the position of the quantum
critical point J;:

Jox s(s+1)

increase of J/ with s — diminishing of quantum effects

R. Darradi, J. Richter and D.J.J. Farnell, J. Phys. Condens. Matter 17, 341-350 (2005)
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J1—J model

J = 1 — antiferromagnetic

Jo > 0 parameter, frustration

at Jo = Js frustration (together with quantum fluctuations) destroys LRO
— quantum paramagnet (magnetically disordered phase)
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J1—J; model: magnetization

sublattice magnetization M versus .J, obtained by CCM-LSUBn
Néel LRO disappears at J5 ~ 0.50 with extrl,
and at J$ ~ 0.434 with extr2

new: up to LSUB10 with 29605 configuration (using the code of Damian

Farnell)
extrl = ag + a1(1/n) + az(1/n)?

04 Jﬁ++++++++ tr2 = b1(1 ba
0.35 'ini"ih';’.‘-ﬂ‘»A +++++++++++++ eXlrz = ao + 1( /n)
0.3 at J, = 1 extrl is better approximation
o at the critical point J¢ extr2 seems to
015 | yield better results
x % -
el Bt Y ~ | reason: scaling rules often change at a
0.05 | . x o
o lext2lsuBato ---- 4 phase transition

o0t 02 0804 05 08, use an approximation (extr2) with

variable exponents
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J1—J5 model: spin stiffness
spin stiffness p, versus J; obtained by CCM-LSUBn

Néel LRO disappears at J5 ~ 0.466 with extrl. and JS ~ 0.374 with extr2.

0.3

[SUB2
0.25 | . LSUB6 - -e -
. o, LSUB8 ---&---
0.2 :ﬁ“\ﬁ TS i
[ 8, . exw2LSUB4S --e-
Ps 015 F™wg = “lg . v '
~,~‘~ E"E:ﬁ : \%\*\* extrl = ag + al(l/n) + a2(1/n)2
0.1t el e, T
-~ Fleee oo extr2 =ao + bi(1/n)"
0.05 t el =38
~.
0 e

0 0.050.10.150.20.250.30.350.40.45

J2
again: extrl better at J, = 1,
extr2 better at J, = J§
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J1—J5 model: gap

Néel ordered state < no gap
quantum paramagnet < gap

J1-J2 Model
1.2 T
LsuB4  +
LSUBS  x
1 extrapolated:4,6,8
number of
0.8 [ ++++
. - .
+++++ configurations:
0.6 |- R i
R : LSUBnR gs ex
o X +
oal Mxe,  oag e, ' ] 4 7 6
***** %><
* + «
**************** 6| 75 91
0.2 T TR iy e REER *,¥++++ -
***** 8| 1287 2011
O L.
-0.2 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
J2

— Neel LRO disappears at J§ ~ 0.34...0.42
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Conclusions: J;—J, model

already known: ground state (energy, magnetization)
Bishop, Farnell, Parkinson PRB 58, 6394

new results:

magnetization: CCM-LSUB10
extrapolation for calculating J$

spin stiffness
gap

with all three measures:
transition from Néel LRO to quantum paramagnet
(magnetically disordered phase) can be described
— approximation of Jg
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Square lattice: magnetization

CCM LSUBn approximation with n = {2,4,6, 8,10} and extrapolated
results

Nr — number of fundamental configurations

E,/N — GS energy per spin

M — sublattice magnetisation

Ng E,/N M /M 45
LSUB2 1 —0.64833 0.84143
LSUB4 7 —0.66366 0.76480
LSUBG6 75 —0.66700 0.72728
LSUBS 1287 —0.66817 0.70484
LSUB10 29605 —0.66870 0.68966
Extrapolated CCM — —0.66960 0.610
3rd order SWT* — —0.66999 0.6138
QMC** — —0.669437(5) | 0.6140(6)

* Hamer et al. PRB 46, 6276 (1992); ** Sandvik PRB 56, 11678 (1997)
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Square lattice: spin stiffness

LSUBn number egs. | stiffness p,
2 3 0.2574
4 40 0.2310
CCM: 6 828 0.2176
8 21124 0.2097
extrl — 0.1812
method Ps
LSWT 0.1912
comparison with ond SWT 0.1810
other methods: 3rd SWT 0.1747
series exp. 0.182
exact diagon. 0.183
quantum Mone Carlo | 0.199

— CCM In excellent agreement with the best results obtained by other means
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Triangular lattice: spin stiffness

parallel stiffness, i.e., the spins are rotated by the twist 8 within the plane of
the system

LSUBn number egs. | stiffness pg
2 3 0.1188
3 14 0.1075
4 67 0.0975
CCM: 5 370 0.0924
6 2133 0.0869
approx. — 0.0585
method Ps||
comparison with exact diagonalization | 0.05
other methods:: _ LSWT | 0.080
Schwinger-boson approach | 0.088
CCM | 0.060

— Improved results by CCM (LSWT is to large)
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Conclusions

CCM leads to quite accurate results for quantum spin
systems
(ground state and first excitation)

qualitativly correct description of GS order-disorder
transitions

no problems with frustration and incommensurate spiral
phases

higher spin s > 1/2 also possible

some further things to do In high-order CCM:
calculation of correlation function
dimerized state as CCM ground state
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