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Since there was some discussion about the (in)equivalence of the three standard pictures in
quantum mechanics in the fully time dependent case, I will show how to obtain the Heisenberg
and interaction pictures from the Schrödinger one in such a situation. The equivalence then
follows from the fact that the transformation from one picture to another is achieved via
unitary transformations – these are bijective.

It will be useful to consider time-ordered exponentials first – they may not be familiar to
everyone.

Time-ordered exponentials

Consider the initial-value problem for the real or complex function y(t)

ẏ(t) = a(t) y(t) [y(0) = 1] , (1)

with a(t) a given real or complex function. It is solved by

y(t) = exp

(∫ t

0

a(t′) dt′
)

, (2)

as can be easily verified by differentiation plus consideration of the initial value.

What about the same problem with Hilbert space operators instead of number-valued func-
tions? Can we write down the solution of

Ẏ (t) = A(t)Y (t) [Y (0) = 1] (3)

in a similar way as (2)? Let us define the operator

B(t) =

∫ t

0

A(t′) dt′ . (4)

This can be done by defining the integral as an appropriate limit of a sum of operators,
essentially the same way a Riemannian integral is defined in the analysis of real functions.
A practical way to compute the integral would be to expand the operator A in terms of its
matrix elements with respect to a time independent orthonormal basis of the Hilbert space,
according to

A(t) =
∑

m,n

〈m|A(t)|n〉 |m〉 〈n| =
∑

m,n

Am,n(t) |m〉 〈n| (5)

and to evaluate B via

B(t) =
∑

m,n

|m〉 〈n|

∫ t

0

Am,n(t
′) dt′ , (6)
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an expression that involves only integrals of ordinary (complex) functions.

The question then is whether exp [B(t)] solves the initial-value problem (3). It is easy to see,
by taking the time derivative, that in general this is not the case:

exp [B(t)] =
∞∑

n=0

B(t)n

n!
= 1 +B(t) +

1

2
B(t)2 +

1

3!
B(t)3 + . . . (7)

;

d exp [B(t)]

dt
= Ḃ(t) +

1

2

[

Ḃ(t)B(t) +B(t)Ḃ(t)
]

+
1

3!

[

Ḃ(t)B(t)2 +B(t)Ḃ(t)B(t) +B(t)2Ḃ(t)
]

+ . . .

= A(t) +
1

2

[

A(t)

∫ t

0

A(t′) dt′ +

∫ t

0

A(t′) dt′ A(t)

]

+
1

3!

[

A(t)

(∫ t

0

A(t′) dt′
)2

+

(∫ t

0

A(t′) dt′
)

A(t)

(∫ t

0

A(t′) dt′
)

+

(∫ t

0

A(t′) dt′
)2

A(t)

]

+ . . . (8)

and we cannot simplify this expression any further, unless [A(t), A(t′)] = 0 for all t′ in the
interval [0, t]. If A “commutes with itself at all times”, we can pull A(t) to the left of the
expression and it is then a factor of exp[B(t)], meaning that the differential equation (3) is
satisfied. Since B(0) = 0, the initial-value problem is also solved.

So the condition [A(t), A(t′)] = 0 is sufficient for exp[B(t)] to be a solution of (3), and it is
also necessary, although I will not attempt to prove that.

However, suppose the condition is not satisfied. Can we still give a formal solution to the
initial-value problem (3)? Yes, we can, and this is where time ordering comes into play.

Taking t1 ≥ t2 ≥ t3 ≥ . . . tn to be an ordered time sequence and (tp1 , tp2 , . . . tpn) an arbitrary

permutation of these times, we define two time-ordering operators
←−
T and

−→
T by

←−
T A(tp1)A(tp2) . . . A(tpn) = A(t1)A(t2) . . . A(tn) , (9a)
−→
T A(tp1)A(tp2) . . . A(tpn) = A(tn)A(tn−1) . . . A(t1) , (9b)

requiring this to be true for arbitrary n ∈ N.

Two remarks are in order. First, the time-ordering operators are not operators on the Hilbert
space of quantum states. Rather, they operate on linear operators on that space. Sometimes,
operators of this type are referred to as superoperators. (Another example of a superoperator is
the commutator operator C×, defined by C×D = [C,D].) Second, the time-ordering operators
are really only a convenient tool to indicate a sequence of application of operators different
from the order in which they are written on the paper. So it allows one to form expressions
that otherwise might be impossible or at least unwieldy.

Note that a rule in doing calculations with a time-ordering operator is that operators ordered
by it may be treated as commuting quantities. Clearly, if we change the permutation on the
left-hand sides of Eqs. (9), the right-hand sides remain unchanged. To make this even more
obvious, consider

←−
T [A(t1), A(t2)] =

←−
T A(t1)A(t2)−

←−
T A(t2)A(t1) = A(t1)A(t2)−A(t1)A(t2) = 0 . (10)
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Now I claim that the formal solution to the initial-value problem (3) is simply

←−
T exp

(∫ t

0

A(t′) dt′
)

, (11)

and the proof is easily obtained by first noting that this is unity for t = 0, i.e., satisfies the
initial condition, and by then taking the derivative:

d

dt

←−
T exp

(∫ t

0

A(t′) dt′
)

=
←−
T

(

A(t) +
1

2

[

A(t)

∫ t

0

A(t′) dt′ +

∫ t

0

A(t′) dt′ A(t)

]

+
1

3!

[

A(t)

(∫ t

0

A(t′) dt′
)2

+

(∫ t

0

A(t′) dt′
)

A(t)

(∫ t

0

A(t′) dt′
)

+

(∫ t

0

A(t′) dt′
)2

A(t)

]

+ . . .

)

=
←−
T

(

A(t) +
1

2
A(t)

[∫ t

0

A(t′) dt′ +

∫ t

0

A(t′) dt′
]

+
1

3!
A(t)

[ (∫ t

0

A(t′) dt′
)2

+

(∫ t

0

A(t′) dt′
)2

+

(∫ t

0

A(t′) dt′
)2 ]

+ . . .

)

= A(t)
←−
T

(

1 +

∫ t

0

A(t′) dt′ +
1

2

(∫ t

0

A(t′) dt′
)2

+ . . .

)

= A(t)
←−
T exp

(∫ t

0

A(t′) dt′
)

. (12)

Clearly, for problems with time dependent Hamiltonian, the solution to the Schrödinger equa-
tion will be governed by a time-ordered exponential of this type (representing the time evolu-
tion operator).

Moreover, it is easy to see that

d

dt

−→
T exp

(∫ t

0

A(t′)

)

dt′ =
−→
T exp

(∫ t

0

A(t′) dt′
)

A(t) , (13)

and this will become useful, too.

It is possible to write the time-ordered exponentials as Neumann series:

←−
T exp

(∫ t

0

A(t′) dt′
)

= 1 +

∫ t

0

dt′A(t′) +

∫ t

0

dt1

∫ t1

0

dt2A(t1)A(t2)

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3A(t1)A(t2)A(t3) + . . . , (14)

−→
T exp

(∫ t

0

A(t′) dt′
)

= 1 +

∫ t

0

dt′A(t′) +

∫ t

0

dt1

∫ t1

0

dt2A(t2)A(t1)

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3A(t3)A(t2)A(t1) + . . . . (15)
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This can be seen either by taking the time derivative, which acts on the outermost integral
only, because the inner ones have limits not containing t. Hence, the first operator satisfies the
initial-value problem (3), the second the differential equation (13) plus an appropriate initial
condition. Since the differential equations are first-order linear and one (operator-valued)
initial condition is given, the solution is unique. (A mathematician might require additional
conditions here to be able to prove uniqueness.)

Alternatively, we may exploit that for a function f(t1, t2, . . . tn) that is totally symmetric in
its arguments, we have

1

n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn f(t1, t2, . . . tn) =

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn f(t1, t2, . . . tn) .

(16)

As long as the time-ordering operator is in front of the exponential, the time-ordered products
of operators appearing in its series expansion are totally symmetric functions. But in the right
hand expression of (16), the times in the integral are ordered already, due to the integration
limits. Then we have no difficulty rewriting the operator product with the desired sequence of
times (on paper!) and may drop the time-ordering operator in front of the whole expression.

Finally, to conclude this section on time-ordered exponentials, I will cite, without proof, Feyn-
man’s disentanglement theorem:

←−
T exp

[∫ t

0

(
G(t′) +H(t′)

)
dt′
]

=
←−
T exp

[∫ t

0

G(t′)dt′
]
←−
T exp

[∫ t

0

H̃(t′)dt′
]

,

where

H̃(t) =
−→
T exp

[

−

∫ t

0

G(t′)dt′
]

H(t)
←−
T exp

[∫ t

0

G(t′)dt′
]

(17)

and each time-ordering operator acts only on the exponential written after it. A way to prove
this is to show that the left-hand side and the right-hand side satisfy the same first-order linear
differential equation with the same initial condition (all exponentials are unity at t = 0). Note

that
−→
T exp

[

−
∫ t

0
G(t′)dt′

]

is the inverse of
←−
T exp

[∫ t

0
G(t′)dt′

]

. (It is almost trivial to show

that it is a left inverse of the latter operator. If the operator is invertible, it must then also be
the right inverse and is unique. At least for antihermitean operators G(t), this is true, because
then the exponential is unitary.)

As an aside, in his paper introducing this theorem, Feynman spoke of disentanglement of an
“experimental factor” (instead of “exponential factor”), either an oversight or a testimony of
his peculiar humour.

The pictures

Let us consider the Schrödinger equation with a time dependent Hamiltonian H(t) and let us
assume the Hamiltonian has a decomposition

H(t) = H0(t) +H1(t) . (18)
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The time dependent Schrödinger equation

˙|ψ〉 = −
i

~
H(t) |ψ〉 (19)

is then solved by

|ψ(t)〉 =
←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

|ψ(0)〉 =
←−
T exp

[

−
i

~

∫ t

0

(
H0(t

′) +H1(t
′)
)
dt′
]

|ψ(0)〉 .

(20)

Note that this solution is also correct in the limit, where H(t) happens to be time independent,

i.e. H(t) = H, because then
←−
T exp

[

− i

~

∫ t

0
H(t′)dt′

]

= exp
[
− i

~
Ht
]
. Thus, Eq. (20) covers this

special case as well and hence is completely general.

Heisenberg picture

The state vector |ψ(t)〉 is not directly observable. Experiments only yield matrix elements
of observables 〈φ(t)|O|ψ(t)〉. So also the time dependence of observable quantities is only
accessible via their matrix elements. It is then possible to assign the time dependence to
the operator associated with the observable rather than to the state vectors. This is the
Heisenberg picture, in which the state vector describes only initial conditions. It may change
only on measurement (including the subsequent observation of a measured value, otherwise it

does not even change then). Setting U(t) =
←−
T exp

[

− i

~

∫ t

0
H(t′)dt′

]

, we can write

〈φ(t)|OS |ψ(t)〉 = 〈U(t)φ(0)|OS |U(t)ψ(0)〉 =
〈

φ(0)
∣
∣
∣U

†(t)OSU(t)
∣
∣
∣ψ(0)

〉

= 〈φ(0)|OH(t)|ψ(0)〉 , (21)

where OS is the standard, usually time-independent, form of an operator in the Schrödinger
picture, and

OH(t) = U †(t)OSU(t) =
−→
T exp

[
i

~

∫ t

0

H(t′)dt′
]

OS

←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

(22)

is its counterpart in the Heisenberg picture. OS can be any operator, in particular, the
Hamiltonian. We then have

HH(t) = U †(t)HSU(t) =
−→
T exp

[
i

~

∫ t

0

H(t′)dt′
]

H(t)
←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

. (23)

IfH is time independent, the time-ordered exponentials become standard exponentials U †(t) =
exp

[
i

~
Ht
]
and U(t) = exp

[
− i

~
Ht
]
that commute with H and, hence, we have HH = H. The

Hamiltonian in the Heisenberg picture is equal to that of the Schrödinger picture and also
time independent. This is no longer true, if HS = H(t) is genuinely time dependent and
[H(t), H(t′)] 6= 0. What form does the Heisenberg equation of motion take in the fully time
dependent case? We have

ȮH(t) =
i

~

−→
T exp

[
i

~

∫ t

0

H(t′)dt′
]

[H(t), OS ]
←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

+
−→
T exp

[
i

~

∫ t

0

H(t′)dt′
]

ȮS

←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

, (24)
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where the second term is zero for most Schrödinger operators, but not for the Schrödinger
Hamiltonian, if that is truly time dependent. Now this equation is not in a convenient form
yet. We would like to have OH in the commutator on the right-hand side and the commutator
should not be surrounded by exponentials. Let us reformulate a bit:

ȮH(t) =
i

~

(

U †(t)H(t)OSU(t)− U †(t)OSH(t)U(t)
)

+ U †(t)ȮSU(t)

=
i

~

(

U †(t)H(t)U(t)
︸ ︷︷ ︸

HH(t)

U †(t)OSU(t)
︸ ︷︷ ︸

OH(t)

−U †(t)OSU(t)U †(t)H(t)U(t)
)

+ U †(t)ȮSU(t)

=
i

~
[HH(t), OH(t)] + U †(t)ȮSU(t) . (25)

For standard Schrödinger operators OS (i.e. operators that are time independent), this be-
comes the Heisenberg equation of motion in its simplest form:

ȮH(t) =
i

~
[HH(t), OH(t)] , (26)

solved by

OH(t) =
←−
T exp

[
i

~

∫ t

0

HH(t′)dt′
]

OH(0)
−→
T exp

[

−
i

~

∫ t

0

HH(t′)dt′
]

. (27)

Since OH(0) = OS , this also gives us

←−
T exp

[
i

~

∫ t

0

HH(t′)dt′
]

=
−→
T exp

[
i

~

∫ t

0

H(t′)dt′
]

, (28a)

−→
T exp

[

−
i

~

∫ t

0

HH(t′)dt′
]

=
←−
T exp

[

−
i

~

∫ t

0

H(t′)dt′
]

. (28b)

For the Hamiltonian itself, the second term on the last line of Eq. (25) does not necessarily
vanish, so we obtain

ḢH(t) =
i

~
[HH(t), HH(t)] + U †(t)Ḣ(t)U(t) = U †(t)Ḣ(t)U(t) , (29)

i.e., the first term vanishes. We may write a general form of the Heisenberg equation of motion
as follows

ȮH(t) =
i

~
[HH(t), OH(t)] +

∂OH

∂t
,

∂OH

∂t
≡ U †(t)ȮS(t)U(t) . (30)

The Heisenberg picture is characterized by the following features:

• State vectors (wave functions) are independent of time during the quantum evolution of
a system.

• The Schrödinger equation does not hold.

• Instead, the Heisenberg equation of motion (30) is satisfied.
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Interaction picture

In the interaction picture, we assign part of the time dependence of a matrix element to
the wave functions and part to the operators. For example, we may take the time-ordered
exponential involving only H0 from (20) as belonging to the time evolution of operators. Set

U0(t) =
←−
T exp

[

−
i

~

∫ t

0

H0(t
′)dt′

]

, (31)

then the disentanglement theorem gives us

←−
T exp

[

−
i

~

∫ t

0

(
H0(t

′) +H1(t
′)
)
dt′
]

=
←−
T exp

[

−
i

~

∫ t

0

H0(t
′)dt′

]
←−
T exp

[

−
i

~

∫ t

0

H̃1(t
′)dt′

]

= U0(t)
←−
T exp

[

−
i

~

∫ t

0

H̃1(t
′)dt′

]

,

where

H̃1(t) = U
†
0
(t)H1(t)U(t) . (32)

Let us abbreviate the second exponential

Ũ1(t) ≡
←−
T exp

[

−
i

~

∫ t

0

H̃1(t
′)dt′

]

, (33)

then we can rewrite a standard matrix element as follows

〈φ(t)|OS |ψ(t)〉 =
〈

U0(t)Ũ1(t)φ(0)
∣
∣
∣OS

∣
∣
∣U0(t)Ũ1(t)ψ(0)

〉

=
〈

Ũ1(t)φ(0)
∣
∣
∣U

†
0
(t)OSU0(t)

∣
∣
∣Ũ1(t)ψ(0)

〉

=
〈

φ̃(t)
∣
∣
∣OI(t)

∣
∣
∣ψ̃(t)

〉

. (34)

Here,
∣
∣ψ̃
〉
satisfies a Schrödinger equation with the interaction Hamiltonian H̃1(t)

∣
∣ ˙̃ψ
〉
= −

i

~
H̃1(t)

∣
∣ψ̃
〉
, (35)

whereas operators satisfy a Heisenberg equation involving H0H :

H0H(t) ≡ U †
0
(t)H0(t)U0(t) ,

ȮI(t) =
i

~
[H0H(t), OI(t)] +

∂OI

∂t
,

∂OI

∂t
= U

†
0
(t)ȮSU0(t) . (36)

In principle, this may be used to do perturbation theory, if H1 is small in some sense compared
to H0 and the problem with H0 as time evolution operator is more easily solvable than the full
problem. The standard case is the one, in which H0 is time independent. Then H0H = H0 and∣
∣ψ̃(t)

〉
= exp

(
i

~
H0t

)
|ψ(t)〉 is a slowly varying function. Without the perturbation H1, it would

be time independent. Eigenstates of the unperturbed problem may be determined and used
as basis of the Hilbert space. The perturbed Schrödinger equation has H̃1 as Hamiltonian and
remains time dependent. The goal of perturbation theory then is the prediction of transition
rates between the eigenstates of the unperturbed problem (i.e., the problem with H0 only) and
a typical result is Fermi’s golden rule.

This strategy is of little use, if H0 becomes time dependent, because the time dependent
eigenstates of H0 (which of course exist) do not lead to simple expressions in an expansion
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of the full solution (because of the time-ordering of the exponential) and the transition rate
from one time-varying state to another also does not look particularly useful. Nevertheless,
the interaction picture exists and might be employed as the starting point of a perturbative
scheme that is just more complicated in the fully time dependent case than in the one, where
the zeroth-order Hamiltonian is time independent.

Moreover, because the calculations presented here are exact, not approximate, the interaction
picture is equivalent to the Schrödinger picture, as the equality of matrix elements (34) cer-
tifies. The relationship between the wave function of the interaction picture and that of the
Schrödinger picture is unitary and so is the relationship between operators in the two pictures.
So the information content of both pictures is the same. Just some interpretations become
different.

Consequences for interpretation

In an answer to my question starting this thread, it was suggested to avoid the Heisenberg
picture in interpreting quantum mechanics, because an interpretation in terms of the wave
function and the Schrödinger picture is much more accessible. I would still like to insist that
interpretations of quantum mechanics should work in all three pictures, if they are to refer to
reality. Of course, we can interpret the mathematical formalism in a particular picture. That
helps in visualizing things, making qualitative assessments and developing intuition about the
best way to understand new experimental situations.

Nevertheless, we must be aware that interpreting the Schrödinger equation in terms of a wave
moving through configuration space and interacting with objects either via the Hamiltonian or
the boundary conditions is not an interpretation of reality. For we can describe reality without
the Schrödinger equation, e.g., by choosing the Heisenberg picture, in which there is no time
dependent wave function. So we really interpret a layer of description that is between us and
reality.

Alternatively, we could use the Feynman approach to quantum mechanics which has been
linked here to the Schrödinger picture. In my opinion, the “ontological setup” of the Feyn-
man approach is closer to the Heisenberg picture. What is calculated via path integrals in
Feynman’s quantum mechanics is the probability amplitude of a point-like entity (a particle)
starting at x1 at time t1 to end at x2 at time t2. This Feynman propagator is similar, but not
identical to, the wave function. In particular, it depends on initial coordinates in addition to
final ones. (It is essentially a Green’s function, satisfying the Schrödinger equation in terms of
the final coordinates and its adjoint equation in terms of the initial ones.) But this propagator
is not the dynamical object of the theory. Rather, the dynamical object consists of one or
several point-like particles, exploring (potentially?) all possible paths between the initial and
final positions. This is very similar to what the operator-valued dynamical variable (e.g., the
position operator of one or more particles) does in the Heisenberg picture. Instead of using
a single Hilbert space operator, Feynman sticks to a c-number description but must allow his
particle(s) to explore many paths and whether this is “real” or “potential” only, is in the eye
of the beholder.

But again, this is interpretation of a formalism, not of reality itself, to which we have very
indirect access only. The peaceful coexistence of different interpretations that at first sight

8



seem to contradict each other is possible, as long as we know that our interpretations refer to
a particular picture only.

However, if we wish to go further, i.e., to say something more fundamental about the very
nature of quantum objects and about how they interact, etc., then, I think, we should make
sure that what we say makes sense in all mathematical representations of quantum mechanics.
That does not exclude that our interpretation uses waves in one picture. But it must also say
what the wave has to be replaced by in another picture that does not use waves. Therefore, it
must explain the wave by something more fundamental that keeps its identity when the wave
is transformed away by going to another picture.
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