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Because writing a lot of formulas into the Research Gate answer window is awkward, I type
this up in LATEX. Also this gives me the opportunity to do a fairly complete summary.

The set of functions I want to consider is described by

fk(x) = sin x e−x2k sin2 x , k ∈ N, k > 0 . (1)

Clearly, all of these functions are analytic in the whole complex plane. Since they are neither
polynomials nor constants, this means they must have an essential singularity at the point
x = ∞.

In particular, I have looked, in preceding discussions, at the two most interesting representa-
tives1 of the set,

f1(x) = sin x e−x2 sin2 x (2)

and

f2(x) = sin x e−x4 sin2 x . (3)

What I’d like to discuss in some detail today is which of the three assertions

(a) limx→∞ f (x) = 0 ,

(b) limx→∞ f ′(x) does not exist,

(c) f (x) is of bounded variation on the interval [x0, ∞), where x0 ∈ R is
arbitrary (but finite)

are satisfied for which values of k by functions from the set.

Let us first calculate their derivatives:

f ′k(x) =
(

cos x − 2kx2k−1 sin3 x − 2x2k sin2 x cos x
)

e−x2k sin2 x . (4)

We can then immediately state that assertion (b) is satisfied by fk(x) for all allowed values of k.
This follows from

f ′k(nπ) = (−1)n , for n ∈ N , (5)

which is due to the fact that sin(nπ) = 0, pushing to zero all the terms in the parentheses
except for the cosine one [cos(nπ) = (−1)n] and setting the exponential to one.

Next, we consider assertion (c). [A statement on (a) will follow from the result.] Since f ′(x) is
continuous, we may calculate the variation on any interval [a, b] from

Vb
a ( f ) =

∫ b

a

∣

∣ f ′(x)
∣

∣dx . (6)

1If we were willing to study a generalization, not requiring analyticity, we could replace k by some real exponent
β, and the two interesting subsets would then be the functions with β ≤ 1 and those with β > 1.
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On each interval, on which f (x) is monotonous, this gives Vb
a ( f ) = | f (b)− f (a)|, so in order

to do the calculation, it is useful to know the positions of the extrema of f (x), because f (x) is
monotonous between two successive isolated extrema.2 That is, we should find the zeros of
f ′(x). This entails solving the transcendental equation

cos x − 2kx2k−1 sin3 x − 2x2k sin2 x cos x = 0 . (7)

Because it is difficult (or impossible) to obtain a general analytic solution, we restrict ourselves
to the case x ≫ 1. We may do so, because it is possible to divide our interval [x0, ∞) into two
subintervals [x0, x1] and [x1, ∞) with x1 ≫ 1, and we know that f (x) is of bounded variation
on [x0, x1], because the integral (6) is definitely finite for a = x0, b = x1, x0, x1 finite, due to
the boundedness of its – continuous – integrand. Thus, in order to assess whether the total
variation is bounded or not, it is sufficient to consider the variation on the interval [x1, ∞)
with x1 ≫ 1. So we will look for solutions of (7) for x ≫ 1 only and we will assume, for
definiteness, nπ < x < (n + 1)π, i.e. restrict attention to an interval on which f (x) 6= 0.
Clearly, this is not a restriction of generality. We rewrite (7) as

kx2k−1 tan x sin2 x + x2k sin2 x =
1

2
, (8)

and solve it using the method of dominant balance. Now when I first looked at this for k = 1,
I immediately saw the dominant balance

k tan x ∼ −x (x ≫ 1) . (9)

Setting x = π
(

n + 1
2

)

+ δ, we see that the requirement for the tangent to become large leads

to tan x ≈ − 1
δ , whence δ ≈ k

π(n+1/2)
(and cos x must be small, hence sin x ≈ 1). The terms

considered in the balance were

kx2k−1 tan x sin2 x ∼ −x2k sin2 x ∼ −π2k

(

n +
1

2

)2k

≫ 1

2
, (10)

so the dominant balance is indeed consistent.3

At the extrema described by this, we have

fk(x) ≈ e−x2k sin2 x ≈ e−x2k ≈ e−[π(n+1/2)]2k
. (11)

Obviously, if this was the only extremum in the interval nπ < x < (n + 1)π, then it would
have to be a local maximum of the absolute value of f (x) on the interval, because f (x) is
zero at its boundaries. The variation on the interval would then be smaller than twice the
value of this maximum, and since the sequence decays exponentially fast (even in n2) the
total variation of fk would be finite for all k ∈ N\0. This was, in fact, what I first believed. But
that was too rash. Care requires to check whether (7) has additional solutions in the interval
[nπ, (n+ 1)π]. Since there are only three terms, there are only three pairs of possible dominant
balances, of which we have already found one.

2In cases, where f (x) has constant pieces on which it is extremal (which is forbidden for the fk(x) by their ana-
lyticity), we take just one point from the interval, on which it is constant as a representative of the sequence of
extrema. All that matters is that f (x) is monotonous on the subintervals considered.

3In asymptotology, if x ≫ 1 (x → ∞) then −x ≫ 1 (x → ∞), too, because g(x) ≫ h(x) (x → ∞) simply means
limx→∞ h(x)/g(x) = 0. In the example, we stay near the center of the interval [πn, π(n + 1)] and just take n large,
so the sine cannot have a zero.
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Another possibility would be

kx2k−1 tan x sin2 x ∼ 1

2
(x ≫ 1) ⇒ sin3 x ∼ cos x

2kx2k−1
. (12)

For large x, this is satisfiable only, if sin x is small, which is the case near the ends of the
interval. Consider x = nπ + δ for definiteness with δ > 0, δ ≪ 1. Then cos x ≈ (−1)n and
δ3 ≈ (−1)n/2k(nπ)2k−1, but then the term that we neglected in our dominant balance,

x2k sin2 x ≈ x2k

( |cos x|
2kx2k−1

)2/3

≈
(

1

2k

)2/3

x(2k+2)/3 ≫ 1 , (13)

which shows that neglecting it in comparison with 1
2 was unjustified. So this pairing does

not lead to a dominant balance nor to new extrema. And of course that holds for the case
x = (n + 1)π − δ as well.

Therefore, let us look at the final possibility for a balance between two terms of (8)

x2k sin2 x ∼ 1

2
⇒ |sin x| ∼ 1√

2xk
. (14)

This is solved, in the interval [nπ, (n + 1)π], by x = nπ + δ with δ ≈ 1/
[√

2(nπ)k
]

and by

x = (n + 1)π − δ with δ ≈ 1/
[√

2((n + 1)π)k
]

. Moreover, we can check (|cos x| ≈ 1)

∣

∣

∣
kx2k−1 tan x sin2 x

∣

∣

∣
≈ kx2k−1 |sin x| 1

2xk
≈ k

2

|sin x|
x

≪ 1

2
, (15)

that is, neglect of the tangent term is justified, we have found another dominant balance.
Estimating the magnitude of fk(x) at the corresponding x values, we find

| fk(x)| ≈ 1√
2xk

e−x2k/2x2k
=

1√
2xk

e−1/2 . (16)

This is much larger than the function values at the first dominant balance. We therefore con-
clude, that fk(x) has, at least for large enough x, three extrema between any pair of zeros
x = nπ and x = (n + 1)π. The extremum for x just above nπ is a maximum for n even (sin x
positive in the interval), then the extremum near x = (n + 1

2 )π must be a minimum, and the
one just below (n + 1)π a maximum again. In intervals with n odd, we have the sequence
minimum, maximum, minimum. As to the absolute value of fk(x), that is always maximum
near the interval boundaries and minimum near its middle.

Because the absolute value of the maxima of fk(x) in closed intervals of length π goes to zero
as 1/nk for n → ∞, we may immediately conclude that limx→∞ fk(x) = 0 from the continuity
of fk(x). This conclusion is independent of the value of k, as long as it is bigger than zero.
Therefore, assertion (a) is true for all the fk(x).

Moreover, given that there are two maxima of the absolute value of fk(x) in the interval
[nπ, (n + 1)π], we have the estimate, if xn,max is the x coordinate of the larger of the two:

| fk(xn,max)| < V
(n+1)π
nπ ( fk) < 4 | fk(xn,max)| .
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( fk varies from zero to the maximum at least once, but its total variation on the interval can
be no more than four times that variation, because there is just one other local maximum in
the interval and it is not as large as the global one.)

If we then take x1 = n1π, we may estimate:

V∞
x1
( f1) >

∞

∑
m=n1

1√
2xmmax

e−1/2
>

∞

∑
m=n1

1√
2(m + 1)π

e−1/2 = ∞ ,

V∞
x1
( fk) <

∞

∑
m=n1

4√
2xk

mmax

e−1/2
<

∞

∑
m=n1

2
√

2

mkπk
e−1/2

< ∞ , for k ≥ 2 . (17)

Since the total variation of fk on the interval [x0, ∞) is obtained by adding a finite quantity to
the variation on [x1, ∞), we can state that assertion (c) is not satisfied for k = 1, but is true for all
k ≥ 2. Of course, the antisymmetry of fk(x) allows an immediate extension to the complete
interval (−∞, ∞). We can say that f1(x) is not of bounded variation on (−∞, ∞) and that
f2(x) as well as all fk(x) with k ∈ N, k > 2 are of bounded variation on (−∞, ∞).

Finally, in the context of the Research Gate discussion, it may be interesting to consider the
asymptotics of fk(x) for x → ∞ along the real axis. To this end, it is useful to note that fk(x)
satisfies the following differential equation:

f ′k(x) =
(

cot x − 2kx2k−1 sin2 x − 2x2k sin x cos x
)

fk(x) . (18)

A local asymptotic analysis of this about the irregular singular point x = ∞ gives, as the
leading behaviour of fk(x), the exact solution of the differential equation. Hence the asym-
ptotic series for fk(x) is given (in standard asymptotic analysis) by the function itself and
contains only one term, i.e. it terminates after the exponential prefactor. The controlling fac-

tor is e−x2k sin2 x, which is not of bounded variation, whereas the leading behaviour includes
the sine prefactor and is of bounded variation for k > 1. Note that the product of two factors
which are not of bounded variation produces an expression of bounded variation here.

What this little study shows is that the following claim, which certainly was the interpretation
by some readers of a number of posts in this thread, “If limx→∞ f (x) = 0 and f (x) is of
bounded variation on [x0, ∞), then limx→∞ f ′(x) = 0, too.” is wrong. But at least this claim
would have had the form of a serious mathematical proposition. Since the author of the posts,
which were read as claiming this, states what he actually meant to say was something like “If
limx→∞ f (x) = 0 and the expression of f (x) contains only functions of bounded variation on
[x0, ∞), then limx→∞ f ′(x) = 0, too.”, let us consider this variant briefly.

The first thing to note is that the statement is pretty ambiguous. Mathematics provides us
with many ways to express functions, so “the expression of f (x)” is not a unique concept.
There may be ways to express a function of bounded variation with and without the inter-
mediate use of functions of unbounded variation. Would such a function qualify as one the
expression of which contains only functions of bounded variation? Morever, most functions
of x will have x in their expression, and this, i.e., the identity function, is not of bounded va-
riation on the interval [x0, ∞). If we had to restrict ourselves to the functions not containing x
in their definition, we could consider constants only. For these, the statement is true, but very
trivial. The only constant function having the limit 0 at infinity is f (x) ≡ 0, and this certainly
satisfies limx→∞ f ′(x) = 0 as well. Now the author of the proposition says this was not what
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he meant and gives sin x or sin x2 as the functions he wanted to exclude. However, examples
don’t exhaust a definition. One counterexample is sufficient to show a theorem to be wrong,
but a definition must allow us to decide for each case whether it a applies to it or not. So let
me try to give a definition that excludes sin x2 but not x. This would read “a function that is
bounded but of not of bounded variation on [x0, ∞)”. Is it true that if we exclude this type
of functions from the “expression of f (x)” that limx→∞ f (x) = 0 implies limx→∞ f ′(x) = 0?

I don’t think this helps. We may write sin x2 = πx2 ∏
∞
n=1

(

1 − x4

n2

)

in any place where it ap-

pears and would have rewritten the expression of our function in a form that does not contain
any bounded functions of unbounded variation,4 which is supposedly sufficient to guarantee
the limit for x → ∞ of f ′(x) to be equal to zero, if the limit of f (x) is. However, f2(x) given
above works as a perfect counterexample for this proposition, if we rewrite the sine as an
infinite product or a series.

My point is that a statement such as “the expression of f (x) does not contain any functions
of unbounded variation” is meaningless without precise rules indicating what are legitimate
or “well-formed” expressions. Once we have these, it might be possible to discuss whether
there is a non-trivial sense in which a proposition referring to bounded variation of terms in
the expression of f (x) may be useful to decide the question about the limit of f ′(x).

On the other hand, such a proposition may not be necessary, given that we have very simple
conditions on the behaviour of the function f ′(x) that, together with assertion (a) ensure that
limx→∞ f ′(x) = 0. Either of the conditions that limx→∞ f ′(x) exists or that f ′(x) [instead of
f (x)] is of bounded variation is sufficient that limx→∞ f (x) = 0 implies limx→∞ f ′(x) = 0, as
I have discussed elsewhere.

4The series expansion of the sine would do as well. I use the product representation just to show that one and the
same function may be expressed in very different, possibly exotic ways, and that therefore a proposition referring
to the “expression of a function” is problematic.
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